DOI QR코드

DOI QR Code

Fabrication of Gold Nanostructures Using Electrochemical Deposition Integrated with Solution Process

용액 공정을 접목한 전기화학 증착 기법을 활용한 금 나노 구조체 제작

  • Jihee Kim (Department of Optics and Mechatronics Engineering, Pusan National University) ;
  • Donghyeon Kim (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Mijeong Kang (Department of Optics and Mechatronics Engineering, Pusan National University)
  • 김지희 (부산대학교 광메카트로닉스공학과) ;
  • 김동현 (부산대학교 인지메카트로닉스공학과) ;
  • 강미정 (부산대학교 광메카트로닉스공학과)
  • Received : 2024.06.28
  • Accepted : 2024.07.10
  • Published : 2024.08.31

Abstract

Nanomaterial electrodes are used to improve the analytical performances of electrochemical measurements in biological and chemical field. Frequently used methods for fabricating metal nanostructures are solution processing and electrodeposition. In the solution process, it is possible to control the characteristics (e.g., direction) of metal growth by using capping agents, thereby fabricating nanoparticles of specific structures. In the electrodeposition, the electrode surface and the deposited metal atoms are in direct contact. Each process has its own limitation as well, and many studies are conducted to overcome such limitation. In this paper, we report an integration of the two fabrication methods and the characteristics, such as structural and electrochemical properties, of the fabricated electrodes. Lastly, we discuss the possibility of using the fabricated nanostructured electrode as a sensor.

나노 소재 전극은 바이오/화학 분야에서 분석 성능을 향상시키기 위한 핵심 요인으로 활용되고 있다. 금속 나노 소재를 제작하는 방법으로는 크게 용액 공정과 전기증착 공정이 있다. 용액 공정에서 capping agent를 사용하면 금속 원자의 결합 방향을 통제할 수 있어 특이적 구조의 나노 입자를 얻을 수 있고, 전기증착 공정을 이용하면 전극 표면과 금속 원자 사이의 직접적인 결합이 일어나서 높은 결합력을 기대할 수 있다. 이 공정들은 각각의 장점을 가지고 있으나, 문제점 또한 있어 이를 해결하기 위해 많은 연구가 진행되고 있다. 이 논문에서는 전극용 금속 나노 소재를 제작하는 두 기법의 융합, 그로부터 확보한 나노 구조 전극 및 그것의 전기화학적 특성을 살펴보고, 그러한 나노 구조 전극의 센서로서의 활용 가능성에 대해 이야기하고자 한다.

Keywords

Acknowledgement

이 연구는 부산대학교 기본연구지원사업(2년)의 지원 하에 연구되었음.

References

  1. N. Baig, I. Kammakakam, and W. Falath, Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges, Mater. Adv., 2, 1821-1871 (2021). https://doi.org/10.1039/D0MA00807A
  2. V. Harish, D. Tewari, M. Gaur, A. B. Yadav, S. Swaroop, M. Bechelany, and A. Barhoum, Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications, Nanomaterials, 12(3), 457 (2022).
  3. K. J. Stine, Biosensor applications of electrodeposited nanostructures, Appl. Sci., 9(4), 797 (2019).
  4. A. Martin-Barreiro, R. Soto, S. Chiodini, A. Garcia-Serrano, S. Martin, L. Herrer, F. Perez-Murano, P. J. Low, J. L. Serrano, S. Marcos, J. Galban, and P. Cea, Uncapped gold nanoparticles for the metallization of organic monolayers, Adv. Mater. Interfaces, 8(18), 2100876 (2021).
  5. R. F. Carvalhal, R. S. Freire, and L. T. Kubota, Polycrystalline gold electrodes: A comparative study of pretreatment procedures used for cleaning and thiol self-assembly monolayer formation, Electroanalysis, 17(14), 1251-1259 (2005). https://doi.org/10.1002/elan.200403224
  6. J. C. Hoogvliet, M. Dijksma, B. Kamp, and W. P. van Bennekom, Electrochemical pretreatment of polycrystalline gold electrodes to produce a reproducible surface roughness for self assembly: A study in phosphate buffer pH 7.4, Anal. Chem., 72(9), 2016-2021 (2000). https://doi.org/10.1021/ac991215y
  7. M. D. Durovic, R. Puchta, Z. D. Bugarcic, and R. van Eldik, Studies on the reactions of [AuCl4]-  with different nucleophiles in aqueous solution, Dalton Trans., 43, 8620-8632 (2014). https://doi.org/10.1039/C4DT00247D
  8. D. F. Yang and M. Morin, Chronoamperometric study of the reduction of chemisorbed thiols on Au(111), J. Electroanal. Chem., 429(1-2), 1-5 (1997). https://doi.org/10.1016/S0022-0728(97)00152-6
  9. J. J. Calvente, Z. Kovacova, M. D. Sanchez, R. Andreu, and W. R. Fawcett, Desorption of spontaneously adsorbed and electrochemically readsorbed 2-mercaptoethanesulfonate on Au(111), Langmuir, 12(23), 5696-5703 (1996). https://doi.org/10.1021/la9601770
  10. R. C. Salvarezza and P. Carro, The electrochemical stability of thiols on gold surfaces, J. Electroanal. Chem., 819, 234-239 (2018). https://doi.org/10.1016/j.jelechem.2017.10.046
  11. K. Arihara, T. Ariga, N. Takashima, K. Arihara, T. Okajima, F. Kitamura, K. Tokuda, and T. Ohsaka, Multiple voltammetric waves for reductive desorption of cysteine and 4-mercaptobenzoic acid monolayers self-assembled on gold substrates, Phys. Chem. Chem. Phys., 5, 3758-3761 (2003). https://doi.org/10.1039/b305867k
  12. D. F. Yang, C. P. Wilde, and M. Morin, Electrochemical desorption and adsorption of nonyl mercaptan at gold single crystal electrode surfaces, Langmuir, 12(26), 6570-6577 (1996). https://doi.org/10.1021/la960365q
  13. T.-H. Lin, C.-W. Lin, H.-H. Liu, J.-T. Sheu, and W.-H. Hung, Potential-controlled electrodeposition of gold dendrites in the presence of cysteine, Chem. Commun., 47, 2044-2046 (2011). https://doi.org/10.1039/c0cc03273e
  14. J. Xiao and L. Qi, Surfactant-assisted, shape-controlled synthesis of gold nanocrystals, Nanoscale, 3, 1383-1396 (2011). https://doi.org/10.1039/c0nr00814a
  15. C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system, Chem. Soc. Rev., 39, 1805-1834 (2010). https://doi.org/10.1039/b907301a
  16. D.-W. Hwang, S. Lee, M. Seo, and T. D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors - A review, Anal. Chim. Acta, 1033, 1-34 (2018). https://doi.org/10.1016/j.aca.2018.05.051
  17. T. Fujita, P. F. Guan, K. McKenna, X. Y. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. W. Chen, Atomic origins of the high catalytic activity of nanoporous gold, Nat. Mater., 11, 775-780 (2012). https://doi.org/10.1038/nmat3391