Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.6.511

A Study on Rinsing Effects of Sn Sensitization and Pd Activation Processes for Uniform Electroless Plating  

Seong-Jae, Jeong (Metal Powder Department, Korea Institute of Materials Science (KIMS))
Mi-Se, Chang (Metal Powder Department, Korea Institute of Materials Science (KIMS))
Jae-Won, Jeong (Metal Powder Department, Korea Institute of Materials Science (KIMS))
Sang-Sun, Yang (Metal Powder Department, Korea Institute of Materials Science (KIMS))
Young-Tae, Kwon (Metal Powder Department, Korea Institute of Materials Science (KIMS))
Publication Information
Journal of Powder Materials / v.29, no.6, 2022 , pp. 511-516 More about this Journal
Abstract
Electroless plating is widely utilized in engineering for the metallization of insulator substrates, including polymers, glass, and ceramics, without the need for the application of external potential. Homogeneous nucleation of metals requires the presence of Sn-Pd catalysts, which significantly reduce the activation energy of deposition. Therefore, rinsing conducted during Sn sensitization and Pd activation is a key variable for the formation of a uniform seed layer without the lack or excess of catalysts. Herein, we report the optimized rinsing process for the functionalization of Sn-Pd catalysts, which enables the uniform FeCo metallization of the glass fibers. Rinsing enables good deposition of the FeCo alloy because of the removal of excess catalysts from the glass fiber. Concurrently, excessive rinsing results in a complete removal of the Sn-Pd nucleus. Collectively, the comprehensive study of the proposed nanomaterial preparation and surface science show that the metallization of insulators is a promising technology for electronics, solar cells, catalysts, and mechanical parts.
Keywords
Electroless plating; Sn sensitization; Pd activation; Rinsing process; Metallization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Hao, R. Wu, R. Zhang, Y. Ha, Z. Chen, L. Wang, Y. Yang, X. Ma, D. Sun, F. Fang and Y. Guo: Adv. Energy Mater., 8 (2018) 1801372.   DOI
2 Y.-H. Lee, J.-S. Kim, J. Noh, I. Lee, H. J. Kim, S. Choi, J. Seo, S. Jeon, T.-S. Kim, J.-Y. Lee and J. W. Choi: Nano Lett., 13 (2013) 5753.
3 C. A. Loto: Silicon, 8 (2016) 177.   DOI
4 K. M. Lee, M. J. Kim, S. Lee, S. Y. Yeo and Y. S. Lee: Korean Chem. Eng. Res., 55 (2017) 264.
5 J. W. Jung, S. T. Williams and A. K.-Y. Jen: RSC Adv., 4 (2014) 62971.   DOI
6 D. Y. Kim, K. J. Yun and Y. S. Lee: Appl. Chem. Eng., 25 (2014) 268.   DOI
7 J.-R. Choi, K. Y. Rhee and S.-J. Park: J. Ind. Eng. Chem., 31 (2015) 47.    DOI
8 H. S. Yoon, J. H Oh, H. K. Lee, J. K. Jeon and S. K. Ryu: Korean Chem. Eng. Res., 46 (2008) 863.
9 R. L. Cohen and K. W. West: J. Electrochem. Soc., 119 (1972) 433.   DOI
10 R. L. Cohen, J. F. D'Amico and K. W. West: J. Electrochem. Soc., 118 (1971) 2042.   DOI
11 L. Wei, J. Yu, X. Hu, R. Wang and Y. Huang: Chin. J. Chem. Eng., 24 (2016) 1154.
12 F.A. Cotton and G. Wilkinson: Advanced Inorganic Chemistry, John Wiley & Sons, New York (1966) 456.
13 J. Przyluski, M. Kasprzak and J. Bielinski: Surf. Coat. Technol., 31 (1987) 203.   DOI
14 H. Woo, J. Park, S. Lee and S. Lee: Chemosphere, 97 (2014) 146.   DOI
15 C. Mora, A. Buljan and T. Figueroa: ACS Appl. Nano Mater., 5 (2022) 4648.
16 L. C. Chen, C. H. Tien, P. W. Tseng, Z. L. Tseng, W. L. Huangm, Y. X. Xu and H. C. Kuo: IEEE Access, 8 (2020) 159415.   DOI
17 A. Ali, V. Baheti, M. Vik and J. Militky: J. Phys. Chem. Solids, 137 (2020) 109181.   DOI
18 S. Huang, J. Wang, Y. Li, J. Tang and X. Zhang: Appl. Surf. Sci., 516 (2020) 146134.   DOI
19 P. R. Deshmukh, H. S. Hyun and Y. Sohn: Korean J. Chem. Eng., 37 (2020) 546.   DOI
20 F. Muench: Chem. Electro. Chem., 8 (2021) 2993.