• 제목/요약/키워드: nanofibers

검색결과 493건 처리시간 0.019초

PEMFC용 설폰화 Poly(ether ether ketone) (SPEEK) 전기방사 나노섬유 이온교환막의 제조 및 특성 (Preparation and Properties of Sulfonated Poly(ether ether ketone) (SPEEK) Electrospun Nanofibrous Ion-exchange Membrane for PEMFC)

  • 곽노석;최은정;황택성
    • 폴리머
    • /
    • 제36권2호
    • /
    • pp.155-162
    • /
    • 2012
  • 전기방사 방법으로 sulfonated poly(ether ether ketone) (SPEEK) 나노섬유를 제조하고, 압축성형법으로 고분자 전해질막 연료전지(polymer electrolyte membrane fuel cell, PEMFC)용 나노섬유막을 제조하였다. SPEEK의 최대 설폰화율은 95% 이었고 초기 열분해 온도는 약 $280^{\circ}C$로 PEEK 보다 낮았으며 접촉각은 설폰화도가 증가함에 따라 감소하였다. 전기방사 나노섬유의 최적 인가전압, 유속, 방사거리(tip to collector distance, TCD) 및 농도는 각각 22 kV, 0.3 mL/hr, 5 cm, 23 wt% 이었고 평균 섬유직경은 47.6 nm 이었다. 한편, SPEEK 이온교환 나노섬유막의 함수율 및 이온교환용량은 설폰화 시간과 설폰화제 함량이 증가함에 따라 증가하였으며 최적값은 각각 20%, 2.03 meq/g으로 Nafion 117 보다 우수하였다. 막의 전기저항은 설폰화 시간이 증가함에 따라 감소하였고 그 값은 0.58~0.06 ${\Omega}{\cdot}cm^2$로 측정되었다. 또한 막의 수소이온전도도는 설폰화 시간이 증가함에 따라 증가하였으며 최대 0.099 S/cm로 Nafion 117 보다 우수하였다.

Inhalation of Bacterial Cellulose Nanofibrils Triggers an Inflammatory Response and Changes Lung Tissue Morphology of Mice

  • Silva-Carvalho, Ricardo;Silva, Joao P.;Ferreirinha, Pedro;Leitao, Alexandre F.;Andrade, Fabia K.;da Costa, Rui M. Gil;Cristelo, Cecilia;Rosa, Morsyleide F.;Vilanova, Manuel;Gama, F. Miguel
    • Toxicological Research
    • /
    • 제35권1호
    • /
    • pp.45-63
    • /
    • 2019
  • In view of the growing industrial use of Bacterial cellulose (BC), and taking into account that it might become airborne and be inhaled after industrial processing, assessing its potential pulmonary toxic effects assumes high relevance. In this work, the murine model was used to assess the effects of exposure to respirable BC nanofibrils (nBC), obtained by disintegration of BC produced by Komagataeibacter hansenii. Murine bone marrow-derived macrophages ($BMM{\Phi}$) were treated with different doses of nBC (0.02 and 0.2 mg/mL, respectively 1 and $10{\mu}g$ of fibrils) in absence or presence of 0.2% Carboxymethyl Cellulose (nBCMC). Furthermore, mice were instilled intratracheally with nBC or nBCMC at different concentrations and at different time-points and analyzed up to 6 months after treatments. Microcrystaline $Avicel-plus^{(R)}$ CM 2159, a plant-derived cellulose, was used for comparison. Markers of cellular damage (lactate dehydrogenase release and total protein) and oxidative stress (hydrogen peroxidase, reduced glutathione, lipid peroxidation and glutathione peroxidase activity) as well presence of inflammatory cells were evaluated in brochoalveolar lavage (BAL) fluids. Histological analysis of lungs, heart and liver tissues was also performed. BAL analysis showed that exposure to nBCMC or CMC did not induce major alterations in the assessed markers of cell damage, oxidative stress or inflammatory cell numbers in BAL fluid over time, even following cumulative treatments. $Avicel-plus^{(R)}$ CM 2159 significantly increased LDH release, detected 3 months after 4 weekly administrations. However, histological results revealed a chronic inflammatory response and tissue alterations, being hypertrophy of pulmonary arteries (observed 3 months after nBCMC treatment) of particular concern. These histological alterations remained after 6 months in animals treated with nBC, possibly due to foreign body reaction and the organism's inability to remove the fibers. Overall, despite being a safe and biocompatible biomaterial, BC-derived nanofibrils inhalation may lead to lung pathology and pose significant health risks.

바이오매스 기반 엔지니어링 플라스틱 연구 동향 (Research Trend of Biomass-Derived Engineering Plastics)

  • 전현열;구준모;박슬아;김선미;제갈종건;차현길;오동엽;황성연;박제영
    • 공업화학
    • /
    • 제31권2호
    • /
    • pp.115-124
    • /
    • 2020
  • 지속가능한 플라스틱 산업은 크게 사용 후에 물과 이산화탄소로 분해되어 환경에 악영향을 주지 않는 생분해성 플라스틱과 대기 중의 탄소자원으로 광합성된 바이오매스로부터 전환된 원료를 사용하여 탄소 중립을 실현하는 바이오매스 기반 플라스틱으로 나누어진다. 그중 산업의 새로운 방향으로 바이오매스 기반 엔지니어링 플라스틱(EP) 및 천연 나노섬유를 이용한 강화 나노복합소재가 각광받고 있다. 이들 소재는 천연자원을 활용한다는 친환경성의 이점 외에도 석유계 플라스틱보다 뛰어난 차별화된 고기능성을 부여하여 고부가가치 플라스틱 시장에서의 경쟁력을 가진다. 대표적 바이오매스 기반 단량체인 isosorbide와 2,5-furandicarboxylic acid로부터 제조되는 폴리에스터, 폴리카보네이트 소재는 석유계 대비 높은 투명성, 기계적 특성, 열안정성, 기체 차단성 등으로 산업화의 선두에 있다. 더 나아가서 연속사용온도 150 ℃ 이상의 슈퍼 EP 소재에도 적용될 수 있는 가능성을 보였다. 나노셀룰로오스, 나노키틴 등의 자연계 나노섬유의 표면 친수성, 다관능기를 활용한 in situ 중합법을 이용하여 기존에 보고된 바 없는 기계적 물성 향상을 최소한의 나노필러 함량으로 이루어내었다. 본 총설에서 다루는 바이오매스 기반 tough-플라스틱은 환경이 요구하는 탄소 중립, 소비자가 요구하는 고기능성, 산업이 요구하는 접근성을 모두 만족함으로써 석유계 플라스틱을 대체해 나갈 것으로 기대한다.