DOI QR코드

DOI QR Code

Preparation and Properties of Sulfonated Poly(ether ether ketone) (SPEEK) Electrospun Nanofibrous Ion-exchange Membrane for PEMFC

PEMFC용 설폰화 Poly(ether ether ketone) (SPEEK) 전기방사 나노섬유 이온교환막의 제조 및 특성

  • Kwak, Noh-Seok (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Choi, Eun-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Hwang, Taek-Sung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 곽노석 (충남대학교 바이오응용화학과) ;
  • 최은정 (충남대학교 바이오응용화학과) ;
  • 황택성 (충남대학교 바이오응용화학과)
  • Received : 2011.06.27
  • Accepted : 2011.09.26
  • Published : 2012.03.25

Abstract

Sulfonated poly(ether ether ketone) (SPEEK) nanofibers were prepared by electrospinning. The nanofibrous membrane for polymer electrolyte membrane fuel cell (PEMFC) was fabricated by compression molding. The maximum degree of sulfonation was 95% and the initial thermal degradation temperature was $280^{\circ}C$ and it's value was lower than that of PEEK. The contact angle of SPEEK increased with decreasing the degree of sulfonation. The optimum voltage, flow rate, tip to collector distance (TCD) and concentration of electrospinning conditions were 22 kV, 0.3 mL/hr, 15 cm, and 23 wt%, respectively. The average nanofibrous diameter was 47.6 nm. The water uptake and ion exchange capacity of SPEEK nanofibrous membrane increased with increasing the sulfonation time and the amount of sulfonating agent. The electrical resistance and proton ionic conductivity of SPEEK membrane increased with decreasing and increasing the sulfonation time, respectively. Their values were 0.58~0.06 ${\Omega}{\cdot}cm^2$and 0.099 S/cm.

전기방사 방법으로 sulfonated poly(ether ether ketone) (SPEEK) 나노섬유를 제조하고, 압축성형법으로 고분자 전해질막 연료전지(polymer electrolyte membrane fuel cell, PEMFC)용 나노섬유막을 제조하였다. SPEEK의 최대 설폰화율은 95% 이었고 초기 열분해 온도는 약 $280^{\circ}C$로 PEEK 보다 낮았으며 접촉각은 설폰화도가 증가함에 따라 감소하였다. 전기방사 나노섬유의 최적 인가전압, 유속, 방사거리(tip to collector distance, TCD) 및 농도는 각각 22 kV, 0.3 mL/hr, 5 cm, 23 wt% 이었고 평균 섬유직경은 47.6 nm 이었다. 한편, SPEEK 이온교환 나노섬유막의 함수율 및 이온교환용량은 설폰화 시간과 설폰화제 함량이 증가함에 따라 증가하였으며 최적값은 각각 20%, 2.03 meq/g으로 Nafion 117 보다 우수하였다. 막의 전기저항은 설폰화 시간이 증가함에 따라 감소하였고 그 값은 0.58~0.06 ${\Omega}{\cdot}cm^2$로 측정되었다. 또한 막의 수소이온전도도는 설폰화 시간이 증가함에 따라 증가하였으며 최대 0.099 S/cm로 Nafion 117 보다 우수하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. S. M. Haile, Acta Mater., 51, 5981 (2003). https://doi.org/10.1016/j.actamat.2003.08.004
  2. G. A. Hards, Int. J. Hydrog. Energy, 21, 777 (1996). https://doi.org/10.1016/0360-3199(96)00019-5
  3. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, and L. Daza, J. Power Sources, 106, 206 (2002). https://doi.org/10.1016/S0378-7753(01)01040-0
  4. J. M. Bae, I. Honma, M. Mur, T. Yamanoto, M. Rikukawa, and N. Ogata, Solid State Ion, 147, 189 (2002). https://doi.org/10.1016/S0167-2738(02)00011-5
  5. L. M. Carvalho, A. R. Tan, and A. D. Gomes, J. Appl. Polym. Sci., 110, 1690 (2008). https://doi.org/10.1002/app.28751
  6. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, J. Membr. Sci., 197, 231 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  7. S. Sambandam and V. Ramani, J. Power Sources, 170, 259 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.026
  8. K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, and A. B. Bocarsly, J. Power Sources, 109, 356 (2002). https://doi.org/10.1016/S0378-7753(02)00086-1
  9. M. K. Mistry, N. R. Choudhury, N. K. Dutta, R. Knott, Z. Shi, and S. Holdcroft, Chem. Mater., 20, 6857 (2008). https://doi.org/10.1021/cm801374h
  10. C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, J. Power Sources, 103, 1 (2001). https://doi.org/10.1016/S0378-7753(01)00812-6
  11. Y. C. Chen, C. C. Tsai, and Y. D. Lee, J. Polym. Sci. Part A: Polym. Chem., 42 1789 (2004). https://doi.org/10.1002/pola.20033
  12. Y. Gao, G. P. Robertson, M. D. Guiver, and X. G. Jian, J. Polym. Sci. Part A : Polym. Chem., 41, 497 (2003). https://doi.org/10.1002/pola.10601
  13. R. Q. Fu, J. J. Woo, S. J. Seo, J. S. Lee, and S. H. Moon, J. Membr. Sci., 309, 156 (2008). https://doi.org/10.1016/j.memsci.2007.10.013
  14. C. Hasiotis, V. Deimede, and C. Kontoyannis, Electrochim. Acta, 46, 2401 (2001). https://doi.org/10.1016/S0013-4686(01)00437-6
  15. J. Kerres, W. Cui, and S. Reichle, J. Polym. Sci. Part A: Polym. Chem., 1, 2421 (1996).
  16. F. Lufrano, G. Squadrito, A. Patti, and E. Passalacqua, J. Appl. Polym. Sci., 77, 1250 (2000). https://doi.org/10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R
  17. M. Rikukawa and K. Sanui, Prog. Polym. Sci., 25, 1463 (2000). https://doi.org/10.1016/S0079-6700(00)00032-0
  18. M. H. Chen, T. C. Chiao, and T. W. Tseng, J. Appl. Polym. Sci., 61, 1205 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1205::AID-APP16>3.0.CO;2-W
  19. C. Geniesa, R. Merciera, B. Silliona, N. Cornetb, G. Gebelb, and M. Pineric, Polymer, 42, 359 (2001). https://doi.org/10.1016/S0032-3861(00)00384-0
  20. B. Y. Jeong, S. H. Song, K. W. Baek, I. H. Cho, and T. S. Hwang, Polymer(Korea), 31, 1 (2007).
  21. X. Ma, C. Zhang, G. Xiao, and D. Yan, J. Power Sources, 188, 57 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.090