Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.2.155

Preparation and Properties of Sulfonated Poly(ether ether ketone) (SPEEK) Electrospun Nanofibrous Ion-exchange Membrane for PEMFC  

Kwak, Noh-Seok (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Choi, Eun-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Hwang, Taek-Sung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.36, no.2, 2012 , pp. 155-162 More about this Journal
Abstract
Sulfonated poly(ether ether ketone) (SPEEK) nanofibers were prepared by electrospinning. The nanofibrous membrane for polymer electrolyte membrane fuel cell (PEMFC) was fabricated by compression molding. The maximum degree of sulfonation was 95% and the initial thermal degradation temperature was $280^{\circ}C$ and it's value was lower than that of PEEK. The contact angle of SPEEK increased with decreasing the degree of sulfonation. The optimum voltage, flow rate, tip to collector distance (TCD) and concentration of electrospinning conditions were 22 kV, 0.3 mL/hr, 15 cm, and 23 wt%, respectively. The average nanofibrous diameter was 47.6 nm. The water uptake and ion exchange capacity of SPEEK nanofibrous membrane increased with increasing the sulfonation time and the amount of sulfonating agent. The electrical resistance and proton ionic conductivity of SPEEK membrane increased with decreasing and increasing the sulfonation time, respectively. Their values were 0.58~0.06 ${\Omega}{\cdot}cm^2$and 0.099 S/cm.
Keywords
SPEEK; electrospinning; sulfonation; nanofiber membrane; electrical resistance; proton ionic conductivity; PEMFC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Gao, G. P. Robertson, M. D. Guiver, and X. G. Jian, J. Polym. Sci. Part A : Polym. Chem., 41, 497 (2003).   DOI   ScienceOn
2 R. Q. Fu, J. J. Woo, S. J. Seo, J. S. Lee, and S. H. Moon, J. Membr. Sci., 309, 156 (2008).   DOI   ScienceOn
3 C. Hasiotis, V. Deimede, and C. Kontoyannis, Electrochim. Acta, 46, 2401 (2001).   DOI   ScienceOn
4 J. Kerres, W. Cui, and S. Reichle, J. Polym. Sci. Part A: Polym. Chem., 1, 2421 (1996).
5 F. Lufrano, G. Squadrito, A. Patti, and E. Passalacqua, J. Appl. Polym. Sci., 77, 1250 (2000).   DOI   ScienceOn
6 M. Rikukawa and K. Sanui, Prog. Polym. Sci., 25, 1463 (2000).   DOI   ScienceOn
7 M. H. Chen, T. C. Chiao, and T. W. Tseng, J. Appl. Polym. Sci., 61, 1205 (1996).   DOI   ScienceOn
8 S. M. Haile, Acta Mater., 51, 5981 (2003).   DOI   ScienceOn
9 B. Y. Jeong, S. H. Song, K. W. Baek, I. H. Cho, and T. S. Hwang, Polymer(Korea), 31, 1 (2007).
10 C. Geniesa, R. Merciera, B. Silliona, N. Cornetb, G. Gebelb, and M. Pineric, Polymer, 42, 359 (2001).   DOI   ScienceOn
11 X. Ma, C. Zhang, G. Xiao, and D. Yan, J. Power Sources, 188, 57 (2009).   DOI   ScienceOn
12 L. M. Carvalho, A. R. Tan, and A. D. Gomes, J. Appl. Polym. Sci., 110, 1690 (2008).   DOI   ScienceOn
13 G. A. Hards, Int. J. Hydrog. Energy, 21, 777 (1996).   DOI   ScienceOn
14 M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, and L. Daza, J. Power Sources, 106, 206 (2002).   DOI   ScienceOn
15 J. M. Bae, I. Honma, M. Mur, T. Yamanoto, M. Rikukawa, and N. Ogata, Solid State Ion, 147, 189 (2002).   DOI   ScienceOn
16 F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, J. Membr. Sci., 197, 231 (2002).   DOI   ScienceOn
17 S. Sambandam and V. Ramani, J. Power Sources, 170, 259 (2007).   DOI   ScienceOn
18 K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, and A. B. Bocarsly, J. Power Sources, 109, 356 (2002).   DOI   ScienceOn
19 M. K. Mistry, N. R. Choudhury, N. K. Dutta, R. Knott, Z. Shi, and S. Holdcroft, Chem. Mater., 20, 6857 (2008).   DOI   ScienceOn
20 C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, J. Power Sources, 103, 1 (2001).   DOI   ScienceOn
21 Y. C. Chen, C. C. Tsai, and Y. D. Lee, J. Polym. Sci. Part A: Polym. Chem., 42 1789 (2004).   DOI   ScienceOn