• Title/Summary/Keyword: nanocrystalline alloy

Search Result 120, Processing Time 0.027 seconds

Magnetic Properties of (Fe, Co)-Al-B-Nb Nanocrystalline Alloys on Composition and Annealing Temperature ((Fe, Co)-Al-B-Nb 초미세결정립합금의 조성 및 열처리온도에 대한 자기적 특성변화)

  • 강대병;김택기;조용수
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • ${(Fe_{0.85}Co_{0.15})}_{75}Al_{7}B_{18-x}Nb_{x}(x=2,\;4\;and\;6\;at%)\;and\;{(Fe_{0.85}Co_{0.15})}_{75}Al_{y}B_{21-y}Nb_{4}(y=3,\;5,\;7,\;9\;at%)$ alloys were prepared by a single-roll quenching method. Microstructure and magnetic properties of the alloys such as saturation magnetization, initial permeability, coercive force and power loss have been investigated as functions of composition and armea1ing temperature. Nanocrystallines are obtained by armealing of as-prepared amorphous alloys in all compositions except the alloy of 9 at% AI. Saturation magnetization increases after armea1ing and, decreases with Nb content. However, AI and B affects the saturation magnetization insignificantly. Initial perrreability of nanocrystallized alloy at 50 kHz is improved roore than twice compared to that of the as-prepared alloy. Coercive force and core loss reach less than half after armea1ing.

  • PDF

Magnetic Properties of $\alpha$-Fe Based Nd-Fe-B Nanocrystalline with High Remanence (고잔류자화 $\alpha$-Fe기 Nd-Fe-B 초미세결정립 합금의 자기특성)

  • 조용수;김윤배;박우식;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.38-41
    • /
    • 1995
  • The effects of Nb and Cu additives as will as substitutional Co into $Nd_{4}Fe_{85.5}B_{10.5}$ melt-spun alloy were studied aiming for finding a $\alpha$-Fe based Nd-Fe-B composite alloys with high energy product. The addition of Nb and Cu to $Nd_{4}Fe_{85.5}B_{10.5}$ decreased the average grain size and increased the coercivity up to 207kA/m(2.6kOe), Further-more, the substitution of Co for Fe in $Nd_{4}Fe_{82}B_{10}Nb_{3}Cu_{1}$ alloy resulted in the decrease of the average grain size (<20nm) and improved the hard magnetic properties. The remanence, coercivity and energy product of optimally annealed $Nd_{4}Fe_{74}Co_{8}B_{10}Nb_{3}Cu_{1}$ alloy were 1.345, 219kA/m(2.75kOe) and $95.5kJ/m^{3}$(12MGOe), respectively.

  • PDF

Magnetic Properties of Nanocrystalline CoW Thin Film Alloys Electrodeposited from Citrate Baths

  • Park, Doek-Yong;Ko, Jang-Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.236-241
    • /
    • 2003
  • Magnetic CoW thin film alloys were electrodeposited from citrate baths to investigate the resulting microstructure and magnetic properties. Deposit tungsten (W) content in the films electrodeposited at $70^{\circ}C$ were independent of current density, while coercivity decreased from hard $(H_{c,//}\~150\;Oe\;and\;H_{c.{\bot}}\;\~240\;Oe)$ to soft magnetic properties $(H_{c,//}\~20\;Oe\;and\;H_{c.{\bot}}\;\~30\;Oe)$ with increasing current densities from $10\;to\;100mA{\cdot}cm^2$, with deposit W content $(\~40\%)$ relatively unaffected by the applied current density. X-ray diffraction analysis indicated that hcp $Co_3W$ phases [(200), (201) and (220) planes] in the CoW films electrodeposited at $70^{\circ}C\;and\;10mA{\cdot}cm^{-2}$ were dominant, whereas amorphous CoW phases with small amount of hcp $Co_3W$ [(002) planes] were dominant with deposition at $70^{\circ}C\;and\;100mA{\cdot}cm^{-2}$. At intermediate current densities $(25\;and\;50mA{\cdot}cm^{-2}),\;hop\;Co_3W$ phases [(200), (002), (201) and (220)] were observed. The average grain size was measured to be 30 nm from Sheller formula. It is suggested that the change of the deposit coercivities in the CoW thin films electrodeposited at $70^{\circ}C$ is attributed to the change of microstructures with varying the current density. Nanostructured $Co_3W/amorphous-CoW$ multilayers were fabricated by alternating current density between 10 and $100 mA{\cdot}cm^{-2}$, varying the individual layer thickness. The magnetic properties of $Co_3W/amorphous-CoW$ multilayers were strongly dependent on the thickness of the alternating hard and soft magnetic thin films. The nanostructured $Co_3W/amorphous-CoW$ multilayers exhibited a shift from low to high coercivities suggesting a strong coupling effect.

$M\""{o}ssbauer$ Effet Studies on Nanocrystalline $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_6$ Alloy (초미세결정립 $ Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_6$ 합금의 $M\""{o}ssbauer$ 효과 연구)

  • 신영남;김재경;양재석;조익한;강신규
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • The crystallization behavior of the amorphous $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_{6}$ alloy with isothermal annealing at $552^{\circ}C$ was studied by $M\"{o}ssbauer$ spectroscopy. The amorphous phase was revealed to coexist together with $Do_{3}-FeSi$ nanocrystalline and Cu-duster in annealed alloys by $M\"{o}ssbauer$ spectrum analysis. At the early stage of crystallization, Si content of FeSi is high due to the creation of Cu-cluster, and decreases with annealing until 60 minutes, which results in the increase in the mean hyperfine field of FeSi, and thereafter keeps constant. After 60 minutes, the decrease in the mean hyperfine field of the residual armrphous, in spite of a slight change in the volume fraction of the FeSi and the residual armrphous, is caused by the increase in the content of Nb and B in residual amorphous phase. Both directions of the hyperfine field, those of the FeSi and the residual amorphous, become randomly oriented in about 60 minutes. For FeSi and Cu-duster, the Avrami exponents are 0.51 and O.65, the activation energies are 2.35 eV and 2.44 eV, and the incubation times are 2.4 minutes and 0.8 minutes respectively. Earlier formation of Cu-duster than that of FeSi is coincidence with the fact that Cu atom promotes the nucleation of the FeSi.

  • PDF

The Effect of Grain Size and Cooling Rate on Phase Transformation for Mechanically Alloyed Ni-36at.%Al Alloy (기계적 합금화된 Ni-36at.%Al 합금의 상변태에 미치는 결정립 크기 및 냉각속도의 영향)

  • Kim, Seong-Uk;Kim, Dae-Geon;Kim, Ji-Sun;An, In-Seop;Kim, Yeong-Do
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.642-647
    • /
    • 2000
  • Nanocrystalline NiAl alloy containing 36at.%Al was synthesized by mechanical alloying (MA). Synthesized powder was sintered by a pulse electric current sintering (PECS) facility. Effecting parameters on the phase transformation were discussed in terms of cooling rate and time spent on heat treatment. The behavior of phase transformation for sintered parts was examined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) method. Microstructure was observed by scanning electron microscopy (SEM). Martensitic lattice parameter and volume fraction was calculated by direct comparison method in X-ray diffraction analysis.

  • PDF

Gradient Microstructure and Mechanical Properties of Fe-6%Mn Alloy by Different Sized Powder Stacking (다른 크기의 분말 적층을 통해 얻은 Fe-6%Mn합금의 경사 미세조직과 기계적 특성)

  • Seo, Namhyuk;Lee, Junho;Shin, Woocheol;Jeon, Junhyub;Park, Jungbin;Son, Seung Bae;Jung, Jae-Gil;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.382-389
    • /
    • 2022
  • A typical trade-off relationship exists between strength and elongation in face-centered cubic metals. Studies have recently been conducted to enhance strength without ductility reduction through surface-treatment-based ultrasonic nanocrystalline surface modification (UNSM), which creates a gradient microstructure in which grains become smaller from the inside to the surface. The transformation-induced plasticity effect in Fe-Mn alloys results in excellent strength and ductility due to their high work-hardening rate. This rate is achieved through strain-induced martensitic transformation when an alloy is plastically deformed. In this study, Fe-6%Mn powders with different sizes were prepared by high-energy ball milling and sintered through spark plasma sintering to produce Fe-6%Mn samples. A gradient microstructure was obtained by stacking the different-sized powders to achieve similar effects as those derived from UNSM. A compressive test was performed to investigate the mechanical properties, including the yielding behavior. The deformed microstructure was observed through electron backscatter diffraction to determine the effects of gradient plastic deformation.

Synthesis and Magnetic Property of Nanocrystalline Fe-Ni-Co Alloys during Hydrogen Reduction of Ni0.5Co0.5Fe2O4 (Ni0.5Co0.5Fe2O4의 수소환원에 의한 나노구조 Fe-Ni-Co 합금의 제조 및 자성특성)

  • Paek, Min Kyu;Do, Kyung Hyo;Bahgat, Mohamed;Pak, Jong Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.167-173
    • /
    • 2011
  • Nickel cobalt ferrite($Ni_{0.5}Co_{0.5}Fe_2O_4$) powder was prepared through the ceramic route by the calcination of a stoichiometric mixture of NiO, CoO and $Fe_2O_3$ at $1100^{\circ}C$. The pressed pellets of $Ni_{0.5}Co_{0.5}Fe_2O_4$ were isothermally reduced in pure hydrogen at $800{\sim}1100^{\circ}C$. Based on the thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and the various reduction products were characterized by X-ray diffraction, scanning electron microscopy, reflected light microscope and vibrating sample magnetometer to reveal the effect of hydrogen reduction on the composition, microstructure and magnetic properties of the produced Fe-Ni-Co alloy. The arrhenius equation with the approved mathematical formulations for the gas solid reaction was applied to calculate the activation energy($E_a$) and detect the controlling reaction mechanisms. In the initial stage of hydrogen reduction, the reduction rate was controlled by the gas diffusion and the interfacial chemical reaction. However, in later stages, the rate was controlled by the interfacial chemical reaction. The nature of the hydrogen reduction and the magnetic property changes for nickel cobalt ferrite were compared with the previous result for nickel ferrite. The microstructural development of the synthesized Fe-Ni-Co alloy with an increase in the reduction temperature improved its soft magnetic properties by increasing the saturation magnetization($M_s$) and by decreasing the coercivity($H_c$). The Fe-Ni-Co alloy showed higher saturation magnetization compared to Fe-Ni alloy.

Crystalline Behavior and Microstructure Analysis in Fe73.28Si13.43B8.72Cu0.94Nb3.63 Alloy

  • Oh, Young Hwa;Kim, Yoon Bae;Seok, Hyun Kwang;Kim, Young-Woon
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.50-54
    • /
    • 2017
  • The microstructure, the crystallization behavior, and magnetic properties of FeSi-based soft magnetic alloys (FINEMET) were investigated using transmission electron microscopy, X-ray diffraction, and coercive force measurements. The amorphous $Fe_{73.28}Si_{13.43}B_{8.72}Cu_{0.94}Nb_{3.63}$ alloys particles, prepared in $10^{-4}$ torr by gas atomization process, were heat treated at $530^{\circ}C$, $600^{\circ}C$, and $670^{\circ}C$ for 1 hour in a vacuum of $10^{-2}$ torr. Nanocrystalline Fe precipitation was first formed followed by the grain growth. Phase formation and crystallite sizes was compared linked to its magnetic behavior, which showed that excellent soft magnetic property can directly be correlated with its microstructure.

Study on Design and Application of an Inductive Coupler for Power Transmission Line (송전선용 비접촉식 커플러의 설계와 적용연구)

  • Kim, Hyun-Sik;Lee, Dong-Chul;Kim, Min-Ho;Lee, Gean;Oh, Young-Woo;Min, Byung-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.234-239
    • /
    • 2010
  • An inductive coupler, which feeds communication to the electric power transmission line, is required to establish Power Line Communication(PLC). The electro-magnetic property of magnetic core and design technology for coupler are very important to manufacture an inductive coupler for power transmission line. The magnetic core with superior electro-magnetic property was manufactured by using nanocrystalline alloy and an inductive coupler, which can operate at the maximum 2,000 A current, was designed and manufactured by establishment of current saturation, signal out winding, and electromagnetic simulation in this study. Communication speed of 14 Mbps in 600 meter communication distance of the real electric power transmission line was obtained by using the inductive coupler and application possibility of the inductive coupler for the electric power transmission line was certified.

A Study on Strength Characteristic Variation as amount of Plastic Deformation and Strength Anisotrophy for ECAP Al 2024 Alloy (ECAP Al 2024 합금의 소성변형량에 따른 강도 특성 및 이방성 연구)

  • Choi J. W.;Ma Y. W.;Yoon K. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.283-286
    • /
    • 2005
  • When subjected to severe shear deformation by ECAP, microstructure of Al2024 becomes nanocrystalline grained texture material. To measure the strength of that, small punch (SP) testing method was adopted as a substitute for the conventional uniaxial tensile testing because the size of material processed by ECAP were limited to $\varphi12mm$ in transverse direction. SP tests were performed with specimens in longitudinal and transverse directions of Al 2024 ECAP metal. For comparing the strength values with those assessed by SP tests, uniaxial tensile tests were also conducted with specimens in longitudinal direction. Failure surfaces of the tested SP specimens showed that failure mode was shear deformation and Al 2024 ECAP metal has an anisotropy in strength. Thus, conventional equations proposed for assessing the strength characteristics were improper to assess those of Al2024 ECAP metal. In this paper a way of assessing the strength of Al 2024 ECAP metal was proposed and was proven to be effective.

  • PDF