• Title/Summary/Keyword: nanoDot

Search Result 166, Processing Time 0.035 seconds

Design and Growth of InAs Multi-Quantum Dots and InGaAs Multi-Quantum Wells for Tandem Solar Cell (텐덤형 태양전지를 위한 InAs 다중 양자점과 InGaAs 다중 양자우물에 관한 연구)

  • Cho, Joong-Seok;Kim, Sang-Hyo;HwangBoe, Sue-Jeong;Janng, Jae-Ho;Choi, Hyon-Kwang;Jeon, Min-Hyon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.352-357
    • /
    • 2009
  • The InAs multi-quantum dots (MQDs) solar cell and InGaAs multi-quantum wells (MQWs) solar cell to cover 1.1 eV and 1.3 eV were designed by 1D poisson, respectively. The MQDs and MQWs of 5, 10, 15 layers were grown by molecular beam epitaxy. The photo luminescence results showed that the 5 period stacked MQDs have the highest intensity at around 1.1 eV with 57.6 meV full width at half maximum (FWHM). Also we can observe 10 period stacked MQWs peak position which has highest intensity at 1.31 eV with 12.37 meV FWHM. The density and size of QDs were observed by reflection high energy electron diffraction pattern and atomic force microscope. Futhermore, AlGaAs/GaAs sandwiched tunnel junctions were modified according to the width of GaAs layer on p-type GaAs substrates. The structures with GaAs width of 30 nm and 50 nm have backward diode characteristics. In contrast, tunnel diode characteristics were observed in the 20 nm of that of sample.

Optical Characteristics of Near-monolayer InAs Quantum Dots

  • Kim, Yeong-Ho;Kim, Seong-Jun;No, Sam-Gyu;Park, Dong-U;Kim, Jin-Su;Im, In-Sik;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.293-294
    • /
    • 2011
  • It is known that semiconductor quantum-dot (QD) heterostructures have superior zero-dimensional quantum confinement, and they have been successfully applied to semiconductor laser diodes (QDLDs) for optical communication and infrared photodetectors (QDIPs) for thermal images [1]. The self-assembled QDs are normally formed at Stranski-Krastanov (S-K) growth mode utilizing the accumulated strain due to lattice-mismatch existing at heterointerfaces between QDs and cap layers. In order to increase the areal density and the number of stacks of QDs, recently, sub-monolayer (SML)-thick QDs (SQDs) with reduced strain were tried by equivalent thicknesses thinner than a wetting layer (WL) existing in conventional QDs (CQDs) by S-K mode. Despite that it is very different from CQDs with a well-defined WL, the SQD structure has been successfully applied to QDIP[2]. In this study, optical characteristics are investigated by using photoluminescence (PL) spectra taken from self-assembled InAs/GaAs QDs whose coverage are changing from submonolayer to a few monolayers. The QD structures were grown by using molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates, and formed at a substrate temperature of 480$^{\circ}C$ followed by covering GaAs cap layer at 590$^{\circ}C$. We prepared six 10-period-stacked QD samples with different InAs coverages and thicknesses of GaAs spacer layers. In the QD coverage below WL thickness (~1.7 ML), the majority of SQDs with no WL coexisted with a small amount of CQDs with a WL, and multi-peak spectra changed to a single peak profile. A transition from SQDs to CQDs was found before and after a WL formation, and the sublevel of SQDs peaking at (1.32${\pm}$0.1) eV was much closer to the GaAs bandedge than that of CQDs (~1.2 eV). These revealed that QDs with no WL could be formed by near-ML coverage in InAs/GaAs system, and single-mode SQDs could be achieved by 1.5 ML just below WL that a strain field was entirely uniform.

  • PDF

Ion Transmittance of Anodic Alumina for Ion Beam Nano-patterning (이온빔 나노 패터닝을 위한 양극산화 알루미나의 이온빔 투과)

  • Shin S. W.;Lee J-H;Lee S. G.;Lee J.;Whang C. N.;Choi I-H;Lee K. H.;Jeung W. Y.;Moon H.-C.;Kim T. G.;Song J. H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.97-102
    • /
    • 2006
  • Anodic alumina with self-organized and ordered nano hole arrays can be a good candidate of an irradiation mask to modify the properties of nano-scale region. In order to try using porous anodic alumina as a mask for ion-beam patterning, ion beam transmittance of anodic alumina was tested. 4 Um thick self-standing AAO templates anodized from Al bulk foil with two different aspect ratio, 200:1 and 100:1, were aligned about incident ion beam with finely controllable goniometer. At the best alignment, the transmittance of the AAO with aspect ratio of 200:1 and 100:1 were $10^{-8}\;and\;10^{-4}$, respectively. However transmittance of the thin film AAO with low aspect ratio, 5:1, were remarkably improved to 0.67. The ion beam transmittance of self-standing porous alumina with a thickness larger than $4{\mu}m$ is extremely low owing to high aspect ratio of nano hole and charging effect, even at a precise beam alignment to the direction of nano hole. $SiO_2$ nano dot array was formed by ion irradiation into thin film AAO on $SiO_2$ film. This was confirmed by scanning electron microscopy that the $SiO_2$ nano dot array is similar to AAO hole array.

Carbon Nanotube DNA Bioconjugates as Nano-Bio Markers (탄소 나노튜브와 DNA와의 결합을 통한 나노-바이오 마커 응용)

  • Hwang Eung-Soo;Chengfan Cao;Hong Sang-Hyun;Jung Hye-Jin;Cha Chang-Yong;Choi Jae-Boong;Kim Young-Jin;Baik Seung-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.668-671
    • /
    • 2005
  • Carbon nanotubes exhibit strong fluorescence emissions in the region of near infrared regions where most biomolecules are transparent. Such signals are highly sensitive to environment variations as well as adsorption of specific biomolecules. In this research, single walled carbon nanotubes(SWNTs) are assembled with different types of DNAs and used to target specific types of DNAs. Dot blot investigations and corresponding raman spectroscopy observations demonstrated excellent selectivity of carbon nanotube-DNA bioconjugates. The results show possibility of using SWNT as generic nano-bio markers for precise detection of different kinds of genes.

  • PDF

CdSe/ZnS 양자점 전계발광소자에서 전하수송층인 Zinc Tin Oxide의 비저항이 소자의 발광 특성에 미치는 영향

  • Yun, Seong-Ryong;Jeon, Min-Hyeon;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.44-44
    • /
    • 2011
  • Unipolar 구조의 양자점 발광소자는 소자에 주입되는 전자로 구동 가능하게 설계되어 bipolar 구조와 달리 직류뿐만 아니라 교류로도 구동이 가능하다. 소자의 구조는 패턴된 ITO 유리기판 위에 Radio frequency magnetron sputter로 성장시킨 투명한 금속산화층 사이에 콜로이드로 분산된 양자점이 포함되어 있다. 본 연구에서는, 전하 수송층으로 사용되는 Zinc Tin Oxide (ZTO)가 전압 인가 시 발생하는 과부하로 인해 낮은 전계발광(electroluminescence, EL)특성이 나타나는 문제점이 있다. 이를 해결하고자 ZTO층의 비저항과 EL특성 사이의 관계를 알아보고, ZTO의 비저항 값을 변화시키기 위해 sputter 공정 중 인가 전력과 작업압력, 산소 분압 등의 성장 조건을 변화시켰다. ZTO의 조성비에 따른 비저항 및 전기적 특성을 홀 측정 장비로 측정하였다. 인가전력이 낮고 작업압력이 낮을수록 비저항 값이 낮았으며, 그에 따라 소자의 동작전압이 낮아지고 EL특성 또한 우수하게 나타났다.

  • PDF

Fabrication and characterization of optoelectronic device using CdSe nanocrystal quantum dots/single-walled carbon nanotubes (카드뮴 셀레나이드 양자점과 단일벽 탄소나노튜브로 구성된 이종 나노 소재를 기반으로 한 광전소자의 제작 및 특성평가)

  • Shim, Hyung-Cheoul;Jeong, So-Hee;Han, Chang-Soo;Kim, Soo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.160-167
    • /
    • 2010
  • In this paper, we fabricated the optoelectronic device based on Cadmium selenide(CdSe) nanocrystal quantum dots (NQDs)/single-walled carbon nanotubes(SWNTs) heterostructure using dieletrophoretic force. The efficient charge transfer phenomena from CdSe to SWNT make CdSe-Pyridine(py)-SWNT unique heterostructures for novel optoelectronic device. The conductivity of CdSe-py-SWNT was increased when it was exposed at ultra violet(UV) lamp, and varied as a function of wavelength of incident light.

Fabrication of Si Nano Dots by Using Diblock Copolymer Thin Film (블록 공중합체 박막을 이용한 실리콘 나노점의 형성)

  • Kang, Gil-Bum;Kim, Seong-Il;Kim, Young-Hwan;Park, Min-Chul;Kim, Yong-Tae;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.17-21
    • /
    • 2007
  • Dense and periodic arrays of holes and Si nano dots were fabricated on silicon substrate. The nanopatterned holes were approximately $15{\sim}40nm$ wide, 40 nm deep and $40{\sim}80\;nm$ apart. To obtain nano-size patterns, self?assembling diblock copolymer were used to produce layer of hexagonaly ordered parallel cylinders of polymethylmethacrylate (PMMA) in polystyrene(PS) matrix. The PMMA cylinders were degraded and removed with acetic acid rinse to produce a PS. $100\;{\AA}-thick$ Au thin film was deposited by using e-beam evaporator. PS template was removed by lift-off process. Arrays of Au nano dots were transferred by using Fluorine-based reactive ion etching(RE). Au nano dots were removed by sulfuric acid. Si nano dots size and height were $30{\sim}70\;nm$ and $10{\sim}20\;nm$ respectively.

  • PDF

Magnetic & Crystallographic Properties of Patterned Media Fabricated by Nanoimprint Lithography and Co-Pt Electroplating (나노임프린트 패터닝과 자성박막도금을 이용하여 제작한 패턴드미디어용 자기패턴의 자기적 및 결정구조특성에 관한 연구)

  • Lee, B.K.;Lee, D.H.;Lee, M.B.;Kim, H.S.;Cho, E.H.;Sohn, J.S.;Lee, C.H.;Jeong, G.H.;Suh, S.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.49-53
    • /
    • 2008
  • Magnetic and crystallographic properties of patterned media fabricated by nanoimprint lithography and Co-Pt electroplating were studied. Thin films of Ru(20 nm)/Ta(5 nm)/$SiO_2$(100 nm) were deposited on Si(100) wafer and then 25 nm hole pattern was fabricated by nanoimprint lithography on substrate. The electroplated Co-Pt nano-dots have the diameter of 35 nm and the height of 27 nm. Magnetic dot patterns of Co-Pt alloy were created using electroplated Co-Pt alloy and then their properties were measured by MFM, SQUID, SEM, TEM and AFM. We observed single domain with perendicular anisotropy for each dot and achieved optimum coercivity of 2900 Oe. These results mean that patterned media fabricated by nanoimprint lithography and electroplating have good properties in view of extending superparamagnetic limit while satisfying the writability requirements with the present write heads.

Electron spin relaxation control in single electron QDs

  • Mashayekhi, M.Z.;Abbasian, K.;Shoar-Ghaffari, S.
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.203-210
    • /
    • 2013
  • So far, all reviews and control approaches of spin relaxation have been done on lateral single electron quantum dots. In such structures, many efforts have been done, in order to eliminate spin-lattice relaxation, to obtain equal Rashba and linear Dresselhaus parameters. But, ratio of these parameters can be adjustable up to 0.7 in a material like GaAs under high-electric field magnitudes. In this article we have proposed a single electron QD structure, where confinements in all of three directions are considered to be almost identical. In this case the effect of cubic Dresselhaus interaction will have a significant amount, which undermines the linear effect of Dresselhaus while it was destructive in lateral QDs. Then it enhances the ratio of the Rashba and Dresselhaus parameters in the proposed structure as much as required and decreases the spin states up and down mixing and the deviation angle from the net spin-down As a result to the least possible value.

Patterning of high resolution metal electrodes using selective surface treatment and dip casting for printed electronics (선택적 표면처리와 딥코팅 방법을 이용한 고해상도 금속 패턴 형성연구)

  • Kim, Yong-Hoon;Eom, You-Hyun;Park, Sung-Kyu;Oh, Min-Seok;Kang, Jung-Won;Han, Jeong-In
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1340_1341
    • /
    • 2009
  • In this report, high-resolution metal electrode patterning is demonstrated by using selective surface treatment and dip casting for low-cost printed electronic applications. On hydrophobic octadecyltrichlorosilane treated $SiO_2$ surface, deep UV irradiation was performed through a patterned quartz photomask to selectively control the surface energy of the $SiO_2$ layer. The deep UV irradiated region becomes hydrophilic and by dipping into Ag nano-ink, Ag patterns were formed on the surface. Using this patterning technique, line patterns and dot arrays having less than $10{\mu}m$ pitch were fabricated.

  • PDF