• 제목/요약/키워드: nanoDot

검색결과 166건 처리시간 0.024초

Fabrication of Nano-Structures on NiFe Film by Anodization with Atomic Force Microscope

  • Okada, T.;Uchida, H.;Inoue, M.
    • Journal of Magnetics
    • /
    • 제11권3호
    • /
    • pp.135-138
    • /
    • 2006
  • We studied local anodization on permalloy $(Ni_{80}Fe_{20})$ thin film with an atomic force microscope (AFM), which was performed by applying a voltage between the permalloy sample and conductive AFM tip. Comparing with anodization on Si (100) substrate, nano-structures on the permalloy thin film was fabricated with low processability.In order to improve the processability on the permalloy thin film, we used dot-fabrication method, thatis, a conductive AFM probe was kept at a position on the film during the anodization process.

Local Structure Invariant Potential for InxGa1-xAs Semiconductor Alloys

  • Sim, Eun-Ji;Han, Min-Woo;Beckers, Joost;De Leeuw, Simon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.857-862
    • /
    • 2009
  • We model lattice-mismatched group III-V semiconductor $In_{x}Ga_{1-x}$ alloys with the three-parameter anharmonic Kirkwood-Keating potential, which includes realistic distortion effect by introducing anharmonicity. Although the potential parameters were determined based on optical properties of the binary parent alloys InAs and GaAs, simulated dielectric functions, reflectance, and Raman spectra of alloys agree excellently with experimental data for any arbitrary atomic composition. For a wide range of atomic composition, InAs- and GaAs-bond retain their respective properties of binary parent crystals despite lattice and charge mismatch. It implies that use of the anharmonic Kirkwood-Keating potential may provide an optimal model system to investigate diverse and unique optical properties of quantum dot heterostructures by circumventing potential parameter searches for particular local structures.

High Performance Piezoelectric Transformers by PIM Using Nano-sized Powders

  • Yoon, Tae-Shik;Yoon, Man-Soon
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.32-33
    • /
    • 2006
  • Processing and properties of high power piezoelectric transformer (PT) fabricated by PIM with nano-sized piezoelectric powders are demonstrated. The high power characteristics of a PMed dome-shaped PT were examined by the lighting test for a 55watt PL lamp. The 55watt PL lamp was successfully driven by the PIMed PT with sustaining efficiency higher than 98%. The transformer with ring/dot area ratio of 2.1 exhibited the maximum properties in terms of output power, efficiency and temperature stability.

  • PDF

나노 금속잉크의 미세 액적 토출을 이용한 마이크로 패터닝 (Micro Patterning of Conductive Line by Micro Droplet Ejection of Nano Metal Ink)

  • 서상훈;박성준;정현철;정재우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.689-693
    • /
    • 2005
  • Inkjet printing is a non-contact and direct writing associated with a computer. In the industrial field, there have been many efforts to utilize the inkjet printing as a new way of manufacturing, especially for electronic devices. For the application of inkjet printing to electronic field, one of the key factors is exact realization of designed images into printed patterns. In this work, micro patterning for conducting line has been studied using the piezoelectric print head and silver nano ink. Dimensions of printed images have been predicted in terms of print resolution and diameter of a single dot. The predicted and the measured values showed consistent results. Using the results, the design capability for industrial inkjet printing could be achieved.

  • PDF

Nitric Oxide Detection of Fe(DTC)3-hybrizided CdSe Quantum Dots Via Fluorescence Energy Transfer

  • Chang-Yeoul, Kim
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.453-458
    • /
    • 2022
  • We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.

50nm급 불연속 나선형 패턴의 마스터 제작 (Fabrication of Master for a Spiral Pattern in the Order of 50nm)

  • 오승훈;최두선;제태진;정명영;유영은
    • 한국정밀공학회지
    • /
    • 제25권4호
    • /
    • pp.134-139
    • /
    • 2008
  • A spirally arrayed nano-pattern is designed as a model pattern for the next generation optical storage media. The pattern consists off types of embossed rectangular dot, which are 50nm, 100nm, 150nm and 200nm in length and 50nm in width. The height of the dot is designed to be 50nm. The pitch of the spiral track of the pattern is 100nm. A ER(Electron resist) master for this pattern is fabricated by e-beam lithography process. The ER is first spin-coated to be 50nm thick on a Si wafer and then the model pattern is written on the coated ER layer by e-beam. After developing this pattern written wafer in the solution, a ER pattern master is fabricated. The most conventional e-beam machine can write patterns in orthogonal way, so we made our own pattern generator which can write the pattern in circular or spiral way. This program generates the patterns to be compatible with the e-beam machine from Raith(Raith 150). To fabricate 50nm pattern master precisely, a series of experiments were done including the design compensation for the pattern size, optimization of the dose, acceleration voltage, aperture size and developing. Through these experiments, we conclude that the higher accelerating voltages and smaller aperture size are better for mastering the nano pattern which is in order of 50nm. With the optimized e-beam lithography process, a spiral arrayed 50nm pattern master adopting PMMA resist was fabricated to have dimensional accuracy over 95% compared to the designed. Using this pattern master, a metal pattern stamp will be fabricated by Ni electro plating for injection molding of the patterned plastic substrate.

Electrically Driven Quantum Dot/wire/well Hybrid Light-emitting Diodes via GaN Nano-sized Pyramid Structure

  • 고영호;김제형;김려화;고석민;권봉준;김주성;김택;조용훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.47-47
    • /
    • 2011
  • There have been numerous efforts to enhance the efficiency of light-emitting diodes (LEDs) by using low dimensional structures such as quantum dots (QDs), wire (QWRs), and wells (QWs). We demonstrate QD/QWR/QW hybrid structured LEDs by using nano-scaled pyramid structures of GaN with ~260 nm height. Photoluminescence (PL) showed three multi-peak spectra centered at around 535 nm, 600 nm, 665 nm for QWs, QWRs, and QDs, respectively. The QD emission survived at room temperature due to carrier localization, whereas the QW emission diminished from 10 K to 300 K. We confirmed that hybrid LEDs had zero-, one-, and two-dimensional behavior from a temperature-dependent time-resolved PL study. The radiative lifetime of the QDs was nearly constant over the temperature, while that of the QWs increased with increasing temperature, due to low dimensional behavior. Cathodoluminescence revealed spatial distributions of InGaN QDs, QWRs, and QWs on the vertices, edges, and sidewalls, respectively. We investigated the blue-shifted electroluminescence with increasing current due to the band-filling effect. The hybrid LEDs provided broad-band spectra with high internal quantum efficiency, and color-tunability for visible light-emitting sources.

  • PDF

Fabrication of Nano Dot and Line Arrays Using NSOM Lithography

  • Kwon Sangjin;Kim Pilgyu;Jeong Sungho;Chang Wonseok;Chun Chaemin;Kim Dong-Yu
    • Journal of the Optical Society of Korea
    • /
    • 제9권1호
    • /
    • pp.16-21
    • /
    • 2005
  • Using a cantilever type nanoprobe having a 100㎚m aperture at the apex of the pyramidal tip of a near-field scanning optical microscope (NSOM), nanopatterning of polymer films are conducted. Two different types of polymer, namely a positive photoresist (DPR-i5500) and an azopolymer (Poly disperse orange-3), spincoated on a silicon wafer are used as the substrate. A He-Cd laser with a wavelength of 442㎚ is employed as the illumination source. The optical near-field produced at the tip of the nanoprobe induces a photochemical reaction on the irradiated region, leading to the fabrication of nanostructures below the diffraction limit of the laser light. By controlling the process parameters properly, nanopatterns as small as 100㎚ are produced on both the photoresist and azopolymer samples. The shape and size variations of the nanopatterns are examined with respect to the key process parameters such as laser beam power, irradiation time or scanning speed of the probe, operation modes of the NSOM (DC and AC modes), etc. The characteristic features during the fabrication of ordered structures such as dot or line arrays using NSOM lithography are investigated. Not only the direct writing of nano array structures on the polymer films but also the fabrication of NSOM-written patterns on the silicon substrate were investigated by introducing a passivation layer over the silicon surface. Possible application of thereby developed NSOM lithography technology to the fabrication of data storage is discussed.

형광입자들의 크기와 농도에 따른 형광 상관 분광함수 측정 (Measurement of Fluorescence Correlation Function by Using Size and Concentration of Fluorescence Particles)

  • 한예슬;이재란;김석원
    • 한국광학회지
    • /
    • 제23권3호
    • /
    • pp.113-118
    • /
    • 2012
  • 형광입자의 크기와 수에 따라 형광 신호의 상관함수 변화를 측정하는 형광상관분광법을 이용하여 용액 내에서 확산 운동하는 나노크기 형광 입자들의 농도와 유체역학적 반지름을 비교하였다. 시료에 사용된 나노크기 형광 입자들은 Alexa Fluor 647, 양자점, 형광 bead이고, 증류수에서 1/10, 1/100로 입자들이 들어있는 용액을 희석하여 각 입자들에 대해 3가지의 다른 농도의 시료를 준비하였다. Alex Fluor 647의 알려져 있는 확산시간을 이용하여 형광상관분광장치의 유효초점 부피를 구하고, 각 입자들의 확산계수, 크기, 희석에 따른 농도 변화를 측정할 수 있었다. 본 연구를 통해, 자체 제작된 형광상관분광장치로 임의적으로 희석된 시료들의 농도를 약 0.1 nM ~ 10 nM의 범위에서 측정할 수 있었고, 양자점의 확산계수를 $27{\pm}1{\mu}m^2/s$로 결정할 수 있었다.

랭뮤어-블롯젯을 통해 형성된 고밀도 양자점 박막과 이를 기반으로 한 발광다이오드 (Light-emitting Diodes based on a Densely Packed QD Film Deposited by the Langmuir-Blodgett Technique)

  • 이승현;정병국;노정균
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.249-254
    • /
    • 2022
  • To achieve high-performance colloidal quantum dot light-emitting diodes (QD-LEDs), the use of a densely packed QD film is crucial to prevent the formation of leakage current pathways and increase in interface resistance. Spin coating is the most common method to deposit QDs; however, this method often produces pinholes that can act as short-circuit paths within devices. Since state-of-the-art QD-LEDs typically employ mono- or bi-layer QDs as an emissive layer because of their low conductivities, the use of a densely packed and pinhole-free QD film is essential. Herein, we introduce the Langmuir-Blodgett (LB) technique as a deposition method for the fabricate densely packed QD films in QD-LEDs. The LB technique successfully transfers a highly dense monolayer of QDs onto the substrate, and multilayer deposition is performed by repeating the transfer process. To validate the comparability of the LB technique with the standard QD-LED fabrication process, we fabricate and compare the performance of LB-based QD-LEDs to that of the spin-coating-based device. Owing to the non-destructiveness of the LB technique, the electroluminescence efficiency of the LB-based QD-LEDs is similar to that of the standard spin coating-based device. Thus, the LB technique is promising for use in optoelectronic applications.