• Title/Summary/Keyword: nano-thick

Search Result 272, Processing Time 0.027 seconds

Study on Influence of Carbon Nanotubes and Alumina Additives to Lubrication and Wear Characteristics (카본 나노튜브 및 알루미나 첨가제가 윤활 및 마모특성에 미치는 영향에 대한 연구)

  • Yun, Chang-Seok;Oh, Dae-San;Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.220-227
    • /
    • 2017
  • In this work, carbon nanotube and nano-size alumina particle are exploited as additive for lubrication experiment. We used pin-on-disk type tribometer to investigate the tribological characteristics of lubricants with respect to additives and rotational speed. We conducted more than 15 trials of tribotests for two hours for each specimen to obtain stable and accurate frictional force and to create measurable wear track on the substrate. We conducted tests at the boundary/mixed lubrication regime to evaluate the influence of additives on the tribological characteristics. We found that the friction coefficient decreased as the rotational speed increased and as additives were added. In particular, the reduction of friction by adding additives was more significant at low rotational speed than at high rotational speed. We speculate that the additives helped to separate and protect the two contacting surfaces at low speed, while the influence of additives was not significant at high speed since sufficiently thick lubricant film was formed. The wear of the substrate was also reduced by adding additives to the lubricant. However, in contrast to friction, the amount of wear at high rotational speed was less when alumina particles were added to the lubricant than the amount of wear at low speed. We speculate that the increased wear at low rotational speed is as a result of the intermittent abrasive wear caused by alumina particles with uneven shape, while the reduced wear at high speed is as a result of sufficient film thickness which prevented the abrasive wear.

Evaluation of Corrosion Resistance and Weldability for the Butt Welding Zone of Hot Rolled Clad Steel Plates (열간압연 클래드강의 맞대기용접부 내식성 및 용접성 평가)

  • Park, Jae-Won;Lee, Chul-Ku
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.47-53
    • /
    • 2013
  • We have investigated the traits of clad metals in hot-rolled clad steel plates, including the sensitization and mechanical properties of STS 316 steel plate and carbon steel (A516), under various specific circumstances regarding post heat treatment, multilayered welds, and thick or repeated welds for repair. For evaluations, sectioned weldments and external surfaces were investigated to reveal the degree of sensitization by micro vickers hardness, tensile, and etching tests the results were compared with those of EPR tests. The clad steel plates were butt-welded using FCAW and SAW with the time of heat treatment as the variable, a that was conducted at $625^{\circ}C$, for 80, 160, 320, 640, and 1280 min. Then, the change in corrosion resistance was evaluated in these specimens. With carbon steel (A516), as the heat treatment time increased, the annealing effect caused the tensile strength to decrease. The micro-hardness gradually increased and decreased after 640 min. The elongation and contraction of the area also increased gradually. The oxalic acid etch test and EPR test on STS316 and the clad metal showed STEP structure and no sensitization. From the test results on multi-layered and repair welds, it could be concluded that there is no effect on the corrosion resistance of clad metals. The purpose of this study was to suggest some considerations for developing on-site techniques to evaluate the sensitization of stainless steels.

Enhanced Magnetic Properties of BiFe1-$_xNi_xO_3$

  • Yoo, Y.J.;Hwang, J.S.;Park, J.S.;Kang, J.H.;Lee, B.W.;Lee, S.J.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.183-183
    • /
    • 2011
  • Multiferroic materials have been widely studied in recent years, because of their abundant physics and potential applications in the sensors, data storage, and spintronics. $BiFeO_3$ is one of the well-known single-phase multiferroic materials with $ABO_3$ structure and G-type antiferromagnetic behavior below the Neel temperature $T_N$ ~ 643 K, but the ferroelectric behavior below the Curie temperature $T_c$~1,103 K. In this study, the $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramics were prepared by solid-state reaction and rapid sintering with high-purity $Bi_2O_32$, $Fe_3O_4$ and NiO powders. The powders of stoichiometric proportions were mixed, as in the previous investigations, and calcined at 450$^{\circ}C$ for $BiFe_{1-x}Ni_xO_3$ for 24 h. The obtained powders were grinded, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, which has been heated up to 800$^{\circ}C$ and sintered in air for 20 min. The sintered disks were taken out from the oven and cooled to room temperature within several min. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu K${\alpha}$ radiation. The Raman measurements were carried out by employing a hand-made Raman spectrometer with 514.5-nm-excitation $Ar^+$ laser source under air ambient condition on a focused area of 1-${\mu}m$ diameter. The field-dependent magnetization measurements were performed with a superconducting quantum-interference-device magnetometer.

  • PDF

Preparation of Suspension in La2O3-Gd2O3-ZrO2 System via Planetary Mill and Characteristics of (La1-xGdx)2Zr2O7 Coatings Fabricated via Suspension Plasma Spray (유성구볼밀을 이용한 La2O3-Gd2O3-ZrO2 계 서스펜션준비와 서스펜션 플라즈마용사를 이용한 (La1-xGdx)2Zr2O7 코팅증착과 특성)

  • Kwon, Chang-Sup;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.453-459
    • /
    • 2013
  • Lanthanum/gadolinium zirconate coatings are deposited via suspension plasma spray with suspensions fabricated by a planetary mill and compared with hot-pressed samples via solid-state reaction. With increase in processing time of the planetary mill, the mean size and BET surface area change rapidly in the case of lanthanum oxide powder. By using suspensions of planetary-milled mixture between lanthanum or gadolinium oxide and nano zirconia, dense thick coatings with fully-developed pyrochlore phases are obtained. The possibilities of these SPS-prepared coatings for TBC application are also discussed.

Microstructure and Giant Magnetoresistance of AgCo Nano-granular Alloy Films (Ag-Co합금박막의 두께에 따르는 미세구조 변화 및 자기저항 거동)

  • 이성래;김세휘
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.131-137
    • /
    • 1998
  • The thickness dependence of the microstructure and the giant magnetoresistance behavior of co-evaporated Co-Ag granular alloy films were investigated. The maximum magnetoresistance ratio of 24% was observed in the the as-deposited state of the 40 at. % Co alloy having 200 nm thickness. The surface scattering contributed about 20% to the total resistivity in the 20 nm thick films. The MR ratio dropped sharply when the film thickness was below 50 nm. The reduction in the Co particle size and the increase in solid solubility of Ag in fcc Co when the film thickness decreased were observed using a high resolution TEM. The aspect ratio of the Co particles was also affected by the film thickness. Those microstructural changes as well as the surface induced spin flipping play a significant role in the $\Delta$p change.

  • PDF

Fabrication of Ni Nanodot Structure Using Porous Alumina Mask (다공성 알루미나 마스크를 이용한 니켈 나노점 구조 제작)

  • Lim, Suhwan;Kim, Chul Sung;Kouh, Taejoon
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.126-129
    • /
    • 2013
  • We have fabricated an ordered Ni nanodot structure using an alumina mask prepared via 2-step anodization technique under phosphoric acid. We have formed a porous structure with average pore size of 279 nm on $2{\mu}m$ thick alumina film and the thermal deposition of thin Ni film though the mask led to the formation of ordered Ni nanodot structure with an average dot size of 293 nm, following the pore structure on the mask. We further investigated the magnetic properties of the nanodot structure by measuring the hysteresis curve at room temperature. When compared to the magnetic properties of a continuous Ni film, we observed the decrease in the squareness and the increase in coercivity along the magnetization easy axis, due to the isolated nanodot structure. Our study suggests that the ordered nanodot structure can be easiy fabricated with thin film deposition technique using anodized alumina mask as a mask.

Fabrication and (Photo)Electrochemical Properties of Fe2O3/Na2Ti6O13/FTO Films for Water Splitting Process (물분해용 Fe2O3/Na2Ti6O13/FTO 박막 제조 및 특성평가)

  • Yun, Kang-Seop;Ku, Hye-Kyung;Kang, Woo-Seung;Kim, Sun-Jae
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.65-69
    • /
    • 2012
  • One dimensional(1D) $Na_2Ti_6O_{13}$ nanorods with 70 nm in diameter was synthesized by a molten salt method. Using the synthesized nanorods, about 750 nm thick $Na_2Ti_6O_{13}$ film was coated on Fluorine-doped tin oxide(FTO) glasss substrate by the Layer-by-layer self-assembly(LBL-SA) method in which a repetitive self-assembling of ions containing an opposite electric charge in an aqueous solution was utilized. Using the Kubelka-Munk function, the band gap energy of the 1D-$Na_2Ti_6O_{13}$ nanorods was nalyzed to be 3.5 eV. On the other hand, the band gap energy of the $Na_2Ti_6O_{13}$ film coated on FTO was found to be a reduced value of 2.9 eV, resulting from the nano-scale and high porosity of the film processed by LBL-SA method, which was favorable for the photo absorption capability. A significant improvement of photocurrent and onset voltage was observed with the $Na_2Ti_6O_{13}$ film incorporated into the conventional $Fe_2O_3$ photoelectrode: the photocurrent increased from 0.25 to 0.82 mA/$cm^2$, the onset voltage decreased from 0.95 to 0.78 V.

Phyllite as a New Flame Retardant Synergist for ABS Resin Containing Bromine Flame Retardant (브롬계 난연제를 사용한 ABS 수지에 대한 신규 난연 상승작용제로시의 천매암)

  • Kim, Seog-Jun
    • Elastomers and Composites
    • /
    • v.41 no.3
    • /
    • pp.172-181
    • /
    • 2006
  • Flame retardant synergism of phyllite was studied in ABS resins containing brominated flame retardant(tetrabromobisphenol A(TBBA) or brominated epoxy oligomer(BEO)) and antimony trioxide($Sb_2O_3)$. Talc was used for the comparison purpose. ABS compounds were manufactured by a twin-screw co-rotating extruder and subsequently injection molded into several specimen for mechanical and thermal properties. Flame retardancy of ABS compounds measured by UL 94 vertical test with 1.6 mm thick bar specimen was enhanced by the replacement of antimony trioxide into phyllite or talc in the range of 12.5%(0.5 wt%) to 37.5%(1.5 wt%). Phyllite showed better synergistic effect comparing with talc especially for BEO. Only phyllite enhanced the flowability of ABS compounds. Notched Izod impact strength decreased with the proportion of phyllite or talc content. Phyllite could replace the antimony trioxide up to the content of 25%(1 wt%) to give better flame retardancy and flowability without darkening problem.

Characteristics of Thermal Radiation Pastes Containing Graphite and Carbon Nanotube (흑연 및 탄소나노튜브 혼합 방열도료의 특성)

  • Lee, Ji Hun;Song, Man-Ho;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.218-224
    • /
    • 2016
  • Thermal radiation pastes were prepared by dispersing carbon materials as fillers with a content of 1 weight percent in an acrylic resin. The kind of fillers was as follows; $25{\mu}m$ graphite, $45{\mu}m$ graphite, $15{\mu}m$ carbon nanotube(CNT), a 1:1 mixture of $25{\mu}m$ graphite and $15{\mu}m$ CNT, and a 1:1 mixture of $45{\mu}m$ graphite and $15{\mu}m$ CNT. Thermal emissivity was measured as 0.890 for the samples with graphite only, 0.893 for that with CNT only, and 0.892 for those containing both. After coating prepared pastes on a side of 0.4 mm thick aluminium plate and placing the plate over an opening of a box maintained at $92^{\circ}C$ with the coated side out, the temperatures on the uncoated side of the plates were measured. The samples containing graphite and CNT showed the lowest temperatures. The paste with mixed fillers was coated on the back side of the PCB of an LED module and thermal analysis was carried out using Thermal Transient Tester (T3ster) in a still air box. The thermal resistance of the module with coated PCB was measured as 14.34 K/W whereas that with uncoated PCB was 15.02 K/W. The structure function analysis of T3ster data revealed that the difference between junction and ambient temperatures was $13.8^{\circ}C$ for the coated case and $18.0^{\circ}C$ for the uncoated. From the infrared images of heated LED modules, the hottest-spot temperature of the module with coated PCB was lower than that of the uncoated one for a given period of LED operation.

Corrosion and Oxidation Behaviors of ion-nitrided tool Steels (이온질화된 공구강 표면의 산화 및 공식거동)

  • Choe Han-Cheol;Lee Ho-Jong;Jeong Yong-Woon
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.126-135
    • /
    • 2005
  • SKD 11 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness and creep strength as well as excellent oxidation resistance. The ion nitrided tool steel containing Mo results in improvement of corrosion resistance, strength at high temperature and pitting resistance, especially in $Cl^-$ contained environment. But the Mo addition causes a disadvantage such as lower oxidation resistance at elevated temperature. In this study, several effects of ion-disadvantage on the oxidation characteristics for SKD 11 steel with various oxidation temperature were investigated. SKD 11 steels were manufactured by using vacuum furnace and solutionized for 1 hr at $1,050^{\circ}C$. Steel surface was ion nitrided at $500^{\circ}C$ for 1 hr and 5 hr by ion nitriding equipment. ion nitrided specimen were investigated by SEM, OM and hardness tester. Oxidation was carried out by using muffle furnace in air at $500^{\circ}C,\;700^{\circ}C\;and\;900^{\circ}C$ for 1hr, respectively. Oxidation behavior of the ion nitrided specimen was investigated by SEM, EDX and surface roughness tester. The conclusions of this study are as follows: It was found that plasma nitriding for 5 hr at $500^{\circ}C$, compared with ion nitriding for 1 hr at $500^{\circ}C$, had a thick nitrided layer and produced a layer with good wear, corrosion resistance and hardness as nitriding time increased. Nitrided SKD 11 alloy for 1hr showed that wear resistance and hardness decreased, whereas surface roughness increased, compared with nitrided SKD 11 alloy for 5 hr. The oxidation surface at $900^{\circ}C$ showed a good corrosion resistance.