• Title/Summary/Keyword: nano-tech

Search Result 187, Processing Time 0.025 seconds

TP53I11 suppresses epithelial-mesenchymal transition and metastasis of breast cancer cells

  • Xiao, Tongqian;Xu, Zhongjuan;Zhang, Hai;Geng, Junsa;Qiao, Yong;Liang, Yu;Yu, Yanzhen;Dong, Qun;Suo, Guangli
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.379-384
    • /
    • 2019
  • Epithelial-mesenchymal transition (EMT) is widely-considered to be a modulating factor of anoikis and cancer metastasis. We found that, in MDA-MB-231 cells, TP53I11 (tumor protein P53 inducible protein 11) suppressed EMT and migration in vitro, and inhibited metastasis in vivo. Our findings showed that hypoxic treatment upregulated the expression of $HIF1{\alpha}$, but reduced TP53I11 protein levels and TP53I11 overexpression reduced $HIF1{\alpha}$ expression under normal culture and hypoxicconditions, and in xenografts of MDA-MB-231 cells. Considering $HIF1{\alpha}$ is a master regulator of the hypoxic response and that hypoxia is a crucial trigger of cancer metastasis, our study suggests that TP53I11 may suppress EMT and metastasis by reducing $HIF1{\alpha}$ protein levels in breast cancer cells.

Effects of Attachment and Proliferation of Retinal Pigment Epithelial Cells on Silk/PLGA Film (실크/PLGA 필름에서 실크 함량이 망막색소 상피세포의 부착 및 증식 거동에 미치는 영향)

  • Jo, Eun-Hye;Kim, Soo-Jin;Cho, Su-Jin;Lee, Ga-Young;Kim, On-You;Lee, Eun-Yong;Cho, Won-Hyung;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.289-295
    • /
    • 2011
  • Biomaterials for retinal tissue engineering must demonstrate several critical features for potential utility, including mechanical integrity, biocompatibility, and slow biodegradation. Silk film biomaterials were designed and characterized to meet these functional requirements. We prepared natural/synthetic hybrid silk/PLGA films using 0, 10, 20, 40, and 80 wt% of silk by a solvent evaporation method. MIT assay was used to confirm the number of cells attached on film at 1, 2, and 3 days, respectively. The morphology of cellular adhesion on films was also confirmed by scanning electron microscope (SEM). RT-PCR was conducted to confrrm mRNA expression of retinal pigment epithelitun (RPE) using RPE65 as a RPEs marker and the expression of cytokeratin were determined by immunofluorescence staining. We confirmed that the silk/PLGA film of 20~40 wt% silk was superior for the adhesion and proliferation of RPEs.

Reduction of Inflammatory Reaction of PLGA Using Fibrin; in vivo Study (PLGA의 염증완화에 대한 피브린의 효과 ; In vivo 연구)

  • Kim, Su-Jin;Hong, Hyun-Hye;Kim, Soon-Hee;Kim, Hye-Lin;Kim, Se-Ho;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • In this study, we evaluated the effect of fibrin, a natural material, on the local inflammatory reaction of PLGA in vivo. PLGA degradation products can decrease the pH in the surrounding tissue, causing local inflammatory reaction. To solve this problem, fibrin/PLGA scaffolds were implanted in 5-week-old Wister rats. To evaluate the influence of fibrin content on inflammatory cytokine expression induced by PLGA, RT-PCR analysis was used. Fibrous wall thickness and macrophage infiltration were evaluated by H&E and ED-1 immunohistochemical staining, respectively. In this study, we showed that fibrin/PLGA scaffolds reduced inflammatory reaction as compared to PLGA scaffold. We concluded that fibrin could reduce inflammatory response of PLGA.

Effect of Demineralized Bone Particle Gel Penetrated into Poly(lactic-co-glycolic acid) Scaffold on the Regeneration of Chondrocyte: In Vivo Experiment (PLGA 다공성 지지체에 함침시킨 DBP젤의 연골재생 효과: In Vivo 실험)

  • Lee, Yun Mi;Shim, Cho Rok;Lee, Yujung;Kim, Ha Neul;Jo, Sun A;Song, Jeong Eun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.789-794
    • /
    • 2012
  • Poly(lactic-co-glycolic acid) (PLGA) has been most widely used due to its advantages such as good biodegradability, controllable rate of degradation and metabolizable degradation products. We manufactured composite scaffolds of PLGA scaffold penetrated DBP gel (PLGA/DBP gel) by a simple method, solvent casting/salt leaching prep of PLGA scaffolds and subsequent soaking in DBP gel. Chondrocytes were seeded on the PLGA/DBP gel. The mechanical strength of scaffold, histology (H&E, Safranin-O, Alcian-blue) and immunohistochemistry (collagen type I, collagen type II) were performed to elucidate in vitro and in vivo cartilage-specific extracellular matrices. It was better to keep the characteristic of chondrocytes in the PLGA/DBP gel scaffolds than that PLGA scaffolds. This study suggests that PLGA/DBP gel scaffold may serve as a potential cell delivery vehicle and a structural basis for in vivo tissue engineered cartilage.

Effect of Silk in Silk/PLGA Hybrid Films on Attachment and Proliferation of Human Aortic Endothelial Cells (실크/PLGA 하이브리드 필름에서 실크가 인간 대동맥 내피세포의 부착과 증식에 미치는 효과)

  • Lee, Jihye;Lee, Sojin;Kim, Seulji;Kim, Kyounghee;Kim, Younglae;Song, Jeongeun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.127-134
    • /
    • 2013
  • The vascular endothelial cells are the inner layers of blood vessels. It regulates the function of blood vessels and proliferation of vascular smooth muscle cells. Poly(lactide-co-glycolic acid) (PLGA) is a biodegradable synthetic polymer with a well-controlled degradation rate and an acceptable mechanical strength. It can be easily fabricated into many shapes. Silk consists of 18 amino acids. It found important for attaching cells cultured in vitro, and maintaining cell functions. In this study, we fabricated silk/PLGA biomaterial hybrid films of 0, 10, 20, 40 and 80 wt% silk. We performed MTT, SEM, ELISA, and immunocytochemistry analyses. We confirmed the adhesion and the proliferation of HAECs on silk/PLGA according to the content of silk, and 40 wt% silk/PLGA hybrid films have superior adhesion and proliferation properties. These results demonstrate that silk/PLGA hybrid films provide suitable surfaces for HAECs, and there is the effect of silk on cell growth and proliferation.

Effect of Ratio of Polyoxalate/PLGA Microspheres on the Release Behavior of Zaltoprofen (Polyoxalate 및 PLGA 미립구의 혼합 비율별에 따른 Zaltoprofen의 방출거동)

  • Lee, Jung Keun;Kim, Kyoung Hee;Kim, Young Lae;Park, Guk Bin;Kim, Min Jeong;Kang, Su Ji;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • Zaltoprofen, a propionic acid derivative non-steroidal anti-inflammatory drug, was known to have powerful inhibitory effects on acute, subacute and chronic inflammation. For initial release and sustained release, the microspheres were prepared using an emulsion-solvent evaporation method like an O/W emulsion method with varying the ratio of zaltoprofen-loaded polyoxalate (POX)/PLGA micropheres. The morphology of the microspheres was confirmed by scanning electron microscopy. The crystallinity of microspheres was analyzed by X-ray diffraction and differential scanning calorimeter. Fourier transform infrared spectroscopy was used to analyze the chemical structure of microspheres. The increased ratio of POX microspheres affected the initial drug release, and the sustained release of drug was influenced by ratio of PLGA microspheres. In this study, the initial release behavior of zaltoprofen can be controlled by the ratio of POX/PLGA microspheres.

Mechanical Property and Cell Compatibility of Silk/PLGA Hybrid Scaffold; In Vitro Study (실크/PLGA 하이브리드 지지체의 기계적 물성과 세포친화력; in vitro 연구)

  • Song, Yi-Seul;Yoo, Han-Na;Eum, Shin;Kim, On-You;Yoo, Suk-Chul;Kim, Hyung-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.189-195
    • /
    • 2011
  • The design of new bioactive scaffolds offering physiologic environment for tissue formation is an important frontier in biomaterials research. In this study, we performed compressive strength, water-uptake ability, and SEM analysis for physical property assessment of 3-D silk/PLGA scaffold, and investigated the adhesion, proliferation, phenotype maintenance, and inflammatory responses of RAW 264.7 and NIH/3T3 for cell compatibility. Scaffolds were prepared by the solvent casting/salt leaching method and their compressive strength and water-uptake ability were excellent at 20 wt% silk content. Result of cell compatibility assay showed that inflammatory responses distinctly decreased, and initial adhesion and proliferation were maximized at 20 wt% silk content. In conclusion, we suggest that silk/PLGA scaffolds may be useful to tissue engineering applications.

Effect of Inflammatory Responses to PLGA Films Incorporated Hesperidin: In vitro and In vivo Results (PLGA/헤스페리딘 함량별 필름에서 염증 완화 효과: In vitro, In vivo 결과)

  • Song, Jeong Eun;Shim, Cho Rok;Lee, Yujung;Ko, Hyun Ah;Yoon, Hyeon;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.323-331
    • /
    • 2013
  • Hesperidin (Hes) has known to having some functions like protection of blood circulatory system, anti-tumor effect, antioxidant effect and anti-inflammatory effect. The goal of this study is to demonstrate the relationship between Hes and inflammatory through in vitro and in vivo studies using poly(lactic-co-glycolic acid) (PLGA) film including Hes as a tissue engineered scaffold. To confirm the proliferation of cells on fabricated scaffold, cells (RAW 264.7 and NIH/3T3) were seeded on PLGA/Hes film then analyzed with MTT and SEM at 1 and 3 days after seeding. The results from ELISA, RT-PCR, and FACS for anti-oxident and anti-inflammatory effect showed that inflammatory response of PLGA/Hes film decreased more than that of PLGA film. Also, in vivo result confirmed that inflammatory response by implanted PLGA/Hes film decreased more comparing with PLGA film. This is because of anti-inflammatory effect of Hes reducing induced inflammatory cell and accumulation of fibrous capsule. The results showed that PLGA/Hes film's capacity on reducing inflammatory is better than PLGA film because of Hes.

Effects of PLGA/Fibrin Scaffolds on Attachment and Proliferation of Costal Cartilage Cells (PLGA/피브린 지지체가 늑연골 세포의 부착과 성장에 미치는 영향)

  • Song, Jeong Eun;Lee, Yujung;Lee, Yun Me;Cho, Sun Ah;Jang, Ji Eun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Poly(lactide-co-glycolic acid) (PLGA) has been widely used in the drug delivery and tissue engineering applications because of its good mechanical strength and biodegradation profile. However, cell attachment to the scaffold is low compared with that on fibrin although cells can be attached to the polymer surface. In this study, PLGA scaffolds were soaked in cells-fibrin suspension and polymerized with dropping fibrinogen-thrombin solution. Cellular proliferation activity was observed in PLGA/fibrin-seeded costal cartilage cells (CC) on 1, 3, and 7 days using the MTT assay and SEM. The effects of fibrin on the extracellular matrix (ECM) formation were evaluated using CC cell-seeded PLGA/fibrin scaffolds. The PLGA/fibrin scaffolds elicited more production of glycosaminoglycan (GAG) and collagen than the PLGA scaffold. In this study, fibrin incorporated PLGA scaffolds were prepared to evaluate the effects of fibrin on the cell attachment and proliferation in vitro and in vivo. In this result, we confirmed that proliferation of cells in PLGA/fibrin scaffolds were better than in PLGA scaffolds. The PLGA/fibrin scaffolds provide suitable environment for growth and proliferation of costal cartilage cells.

Enhancing Electrical and Optical Properties in Mechanoluminescent Flexible Nanocomposite Based on ZnS:Cu-PDMS by Mixing CNTs (ZnS:Cu-PDMS 기반 기계 발광 유연 나노 복합체의 CNT 혼입에 따른 전기 및 광학적 특성 향상에 대한 연구)

  • Tae-Min Kim;Hyun-Woo Kim;Jong-Hyeok Yoon;Mi-Hee Kim;Da-Bin Jeon;Dae-Choul Choi;Sung-Nam Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.531-535
    • /
    • 2023
  • Mechanoluminescence (ML) is a phenomenon where the application of mechanical force to ML materials generates an electric field and produces light, holding significant promise as an eco-friendly technology. However, challenges in commercializing ML technology has arisen due to its low brightness and short luminous lifetime. To address this, in this work, we enhance ML efficiency by mixing carbon nanotubes (CNTs) into a ZnS: Cu embedded in a polydimethylsiloxane composite ML device. The inclusion of CNTs boosts ML intensity by 98% compared to devices without CNTs, as the increasing CNT fraction elevates conductivity, thereby amplifying ML intensity. However, this increase in CNT fraction also leads to enhanced light absorption within the device. Consequently, we observe a trend where ML intensity rises initially but declines beyond a CNT fraction of 0.0015 wt%. Based on these findings, we anticipate that our research will make valuable contributions to the advancement of electrical powerless mechanoluminescent technology.