• 제목/요약/키워드: nano-sensors

검색결과 373건 처리시간 0.02초

A/D 컨버터 확장기술을 응용한 온도제어장치 기술 (Temperature Control System Technology of Possible Output Error Detection with Expanded A/D Converting Technology)

  • 박성백;신훈규;권영수
    • 한국전기전자재료학회논문지
    • /
    • 제27권10호
    • /
    • pp.635-641
    • /
    • 2014
  • In this study, the temperature control device was designed for the study in order to detect the output in frequency of temperature, and the study confirmed accurate temperature values treated systemically by using expanded A/D converting Technology. The control technology of functional sensor included the output error Detection. For the future study, it is necessary to implement a control device by building multiple circuits integrally with different types of sensors such as a automatically and intelligent notification function sensors.

Evaluation of combat calorie consumption based on GoBe2 nanosensor

  • Shuo Guan;Benxu Zou
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.527-539
    • /
    • 2023
  • Measuring energy burn during intensive combat sport has been a challenging concerns for a long time. In the present article, the energy consumption during combat sports is measured by use of wearable GoBe2 equipped with nanotechnology measuring devices. In this regard, 12 professional combat athletes were asked to wear GoBe2 devices during different sessions of intensive combat exercises. The curves provided by GoBe2 nano-sensor devices are further collected and analyzed for different combat durations. On the other hand, energy consumption in these athlete is calculated using other validated methods to evaluate reliability of GoBe2 wearable devices. Based on the results obtained from these experiments a multi-parameter mathematical model is presented for estimation of combat calorie consumptions. The results show that nanotechnology in these type of sensors could help in estimation of calorie consumption during combat. Moreover, the reliability of using wearable GoBe2 sensors are satisfactory except for some specific conditions. The mathematical model provides a satisfactory results based on athlete physical condition and also duration of the combat with about 8% error margin in the results.

덴드리머와 팔라듐 나노입자를 이용한 단일벽 탄소나노튜브 고성능수소센서 (Effects of Pd Nanoparticles on Single-Walled Carbon Nanotubes as High-Sensitivity Hydrogen Gas Sensors)

  • 이준민;주성화;조진현;김성진;이우영
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.342-346
    • /
    • 2010
  • Pd nanoparticles (NPs) were successfully functionalizedon the surfaces of single-walled carbon nanotubes (SWNTs) by dendrimer-mediated synthesis. The hydrogen sensing properties of the Pd NPs functionalized SWNTs were investigated. Pd NPs-dendrimer-SWNTs sensors show much better speedsand superior recovery rates but lower sensitivity compared to Pd NPs-functionalized SWNTs directly fabricated due to the existence of dendrimers. Pyrolysis of the dendrimers by heat treatment resulted in a fast response time and high sensitivity owing to the reduced length of the dendrimers. These results demonstrate that the heat treatment of dendrimers in Pd NPs-dendrimer-SWNTs sensors can enable significant electrical conductance modulation upon exposure to extremely low concentrations (10 ppm) of hydrogen gas ($H_2$) in air.

Combination of fuzzy models via economic management for city multi-spectral remote sensing nano imagery road target

  • Weihua Luo;Ahmed H. Janabi;Joffin Jose Ponnore;Hanadi Hakami;Hakim AL Garalleh;Riadh Marzouki;Yuanhui Yu;Hamid Assilzadeh
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.531-548
    • /
    • 2024
  • The study focuses on using remote sensing to gather data about the Earth's surface, particularly in urban environments, using satellites and aircraft-mounted sensors. It aims to develop a classification framework for road targets using multi-spectral imagery. By integrating Convolutional Neural Networks (CNNs) with XGBoost, the study seeks to enhance the accuracy and efficiency of road target identification, aiding urban infrastructure management and transportation planning. A novel aspect of the research is the incorporation of quantum sensors, which improve the resolution and sensitivity of the data. The model achieved high predictive accuracy with an MSE of 0.025, R-squared of 0.85, RMSE of 0.158, and MAE of 0.12. The CNN model showed excellent performance in road detection with 92% accuracy, 88% precision, 90% recall, and an f1-score of 89%. These results demonstrate the model's robustness and applicability in real-world urban planning scenarios, further enhanced by data augmentation and early stopping techniques.

금속 멤브레인 압력 센서에서 압저항체 패턴 형태에 따른 특성 비교 (Comparison of the Characteristics of Metal Membrane Pressure Sensors Depending on the Shape of the Piezoresistive Patterns)

  • 박준;김창규
    • 센서학회지
    • /
    • 제33권3호
    • /
    • pp.173-178
    • /
    • 2024
  • Development of pressure sensors for harsh environments with high pressure, humidity, and temperature is essential for many applications in the aerospace, marine, and automobile industries. However, existing materials such as polymers, adhesives, and semiconductors are not suitable for these conditions and require materials that are less sensitive to the external environment. This study proposed a pressure sensor that could withstand harsh environments and had high durability and precision. The sensor comprised a piezoresistor pattern and an insulating film directly formed on a stainless-steel membrane. To achieve the highest sensitivity, a pattern design method was proposed that considered the stress distribution in a circular membrane using finite element analysis. The manufacturing process involved depositing and etching a dielectric insulating film and metal piezoresistive material, resulting in a device with high linearity and slight hysteresis in the range of a maximum of 40 atm. The simplicity and effectiveness of this sensor render it a promising candidate for various applications in extreme environments.

Pd 촉매금속의 표면형상 변형에 의한 고감도 MEMS 형 마이크로 수소가스 센서 제조공정 (Highly Sensitive MEMS-Type Micro Sensor for Hydrogen Gas Detection by Modifying the Surface Morphology of Pd Catalytic Metal)

  • 김정식;김범준
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.532-537
    • /
    • 2014
  • In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about $5mm{\times}4mm$ and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at $70^{\circ}C$ for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.

Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory

  • Rahmani, Omid;Deyhim, Soroush;Hosseini, S. Amir Hossein
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.371-388
    • /
    • 2018
  • In this paper, a new model based on nonlocal high order theory is proposed to study the size effect on the bending of nano-sandwich beams with a compliance core. In this model, in contrast to most of the available sandwich theories, no prior assumptions are made with respect to the displacement field in the core. Herein the displacement and the stress fields of the core are obtained through an elasticity solution. Equations of motion and boundary conditions for nano-sandwich beam are derived by using Hamilton's principle and an analytical solution is presented for simply supported nano-sandwich beam. The results are validated with previous studies in the literature. These results can be utilized in the study of nano-sensors and nano-actuators. The effect of nonlocal parameter, Young's modulus of the core and aspect ratio on the deflection of the nano-sandwich beam is investigated. It is concluded that by including the small-scale effects, the deflection of the skins is increased and by increasing the nonlocal parameter, the influence of small-scale effects on the deflections is increased.

3D 프린팅 센서 연구 동향 소개-전왜성 변형/로드셀 센서 중심으로 (A review of 3D printing technology for piezoresistive strain/loadcell sensors)

  • 조정훈;문현우;김성용;최백규;오광원;정관영;강인필
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.388-394
    • /
    • 2021
  • The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.

Chemiresistive Gas Sensors for Detection of Chemical Warfare Agent Simulants

  • Lee, Jun Ho;Lee, Hyun-Sook;Kim, Wonkyung;Lee, Wooyoung
    • 센서학회지
    • /
    • 제28권3호
    • /
    • pp.139-145
    • /
    • 2019
  • Precautionary detection of chemical warfare agents (CWAs) has been an important global issue mainly owing to their toxicity. To achieve proper detection, many studies have been conducted to develop sensitive gas sensors for CWAs. In particular, metal-oxide semi-conductors (MOS) have been investigated as promising sensing materials owing to their abundance in nature and excellent sensitivity. In this review, we mainly focus on various MOS-based gas sensors that have been fabricated for the detection of two specific CWA simulants, 2-chloroethyl ethyl sulfide (2-CEES) and dimethyl methyl phosphonate (DMMP), which are simulants of sulfur mustard and sarin, respectively. In the case of 2-CEES, we mainly discuss $CdSnO_3-$ and ZnO-based sensors and their reaction mechanisms. In addition, a method to improve the selectivity of ZnO-based sensors is mentioned. Various sensors and their sensing mechanisms have been introduced for the detection of DMMP. As the reaction with DMMP may directly affect the sensing properties of MOS, this paper includes previous studies on its poisoning effect. Finally, promising sensing materials for both gases are proposed.

나노 SnO2:CNT를 이용한 가스센서의 제작 및 특성연구 (Characteristics and Preparation of Gas Sensors Using Nano SnO2:CNT)

  • 유일
    • 한국재료학회지
    • /
    • 제26권9호
    • /
    • pp.468-471
    • /
    • 2016
  • $SnO_2:CNT$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and were annealed at $300^{\circ}C$ in air. The nano $SnO_2$ powders were prepared by solution reduction method using tin chloride ($SnCl_2.2H_2O$), hydrazine ($N_2H_4$) and NaOH. Nano $SnO_2:CNT$ sensing materials were prepared by ball-milling for 24h. The weight range of CNT addition on the $SnO_2$ surface was from 0 to 10 %. The structural and morphological properties of these sensing material were investigated using X-ray diffraction and scanning electron microscopy and transmission electron microscope. The structural properties of the $SnO_2:CNT$ sensing materials showed a tetragonal phase with (110), (101), and (211) dominant orientations. No XRD peaks corresponding to CNT were observed in the $SnO_2:CNT$ powders. The particle size of the $SnO_2:CNT$ sensing materials was about 5~10 nm. The sensing characteristics of the $SnO_2:CNT$ thick films for 5 ppm $H_2S$ gas were investigated by comparing the electrical resistance in air with that in the target gases of each sensor in a test box. The results showed that the maximum sensitivity of the $SnO_2:CNT$ gas sensors at room temperature was observed when the CNT concentration was 8wt%.