• Title/Summary/Keyword: nano-glass

Search Result 503, Processing Time 0.025 seconds

Magnetic Properties of Transition Metal Doped La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti) (전이금속을 치환한 란탄망간산화물계 La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti)의 자성 특성 연구)

  • Kang, J.H.;Jun, S.J.;Park, J.S.;Lee, Y.P.;Lee, Y.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • Magnetic properties of transition metal doped $La_{0.5}Ca_{0.5}(Mn_{0.98}TM_{0.02})O_3$(TM=Cr and Ti) are studied. The samples are synthesized by the conventional solid-state method. Using vibrating sample magnetometer magnetization-temperature measurement were carried out with zero field cooling and field cooling at 50 Oe. Cr-doped sample shows cluster or spin glass like behavior while Ti doped does not. Curie temperature obtained were decreased from that of LCMO(245.5 K). Curie temperatures of Cr-doped and Ti-doped samples are 235.5 K and 232.7 K, respectively. The temperature-dependent coercivity $H_c(T)$ was also measured. The coercive force continuously decreases with the substitution of Cr and Ti, The result can be understood in terms of the interaction between defect and domain wall.

Fabrication of super hydrophilic TiO2 thin film by a liquid phase deposition (액상증착법에 의한 초친수 TiO2 박막 제조)

  • Jung, Hyun-Ho;Kim, Jin-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Choi, Duk-Gun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.227-231
    • /
    • 2010
  • Super hydrophilic $TiO_2$ thin films with photocatalytic property were successfully fabricated on a glass substrate by liquid phase deposition (LPD). The $TiO_2$ thin film formed nano particles on a surface at $70^{\circ}C$. As an immersion time in $TiF_4$ solution increased, the thickness of thin films gradually increased. $TiO_2$ thin film showed a water contact angel of below ca. $5^{\circ}$ and the transmittance of ca. 75~90 % in visible range. In addition, $TiO_2$ thin film showed the photocatalytic property to decompose methyl orange solution by the illumination of UV light. The surface morphologies, optical properties and contact angel of prepared thin films with a different immersion time were measured by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), UV-Vis spectrophotometer and contact angle meter.

a-SiGe:H 박막의 고상결정화에 따른 주요 결험 스핀밀도의 변화

  • 노옥환;윤원주;이정근
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.78-78
    • /
    • 2000
  • 다결정 실리콘-게르마늄 (poly-SiGe)은 태양전지 개발에 있어서 중요한 물질이다. 우리는 소량의 Ge(x=0.05)으로부터 다량의 Ge(x=0.67)을 함유한 수소화된 비정질 실리콘-게르마늄 (a-SiGe:H) 박막의 고상결정화 과정을 ESR (electron spin resonance)방법으로 조사해보았다. 먼저 PECVD 방법으로 Corning 1737 glass 위에 a-Si1-xGex:H 박막을 증착시켰다. 증착가스는 SiH4, GeH4 가스를 썼으며, 기판온도는 20$0^{\circ}C$, r.f. 전력은 3W, 증착시 가스압력은 0.6 Torr 정도이었다. 증착된 a-SiGe:H 박막은 $600^{\circ}C$ N2 분위기에서 다시 가열되어 고상결정화 되었고, 결정화 정도는 XRD (111) peak의 세기로부터 구해졌다. ESR 측정은 상온 x-band 영역에서 수행되었다. 측정된 ESR스팩트럼은 두 개의 Gaussian 함수로써 Si dangling-bond와 Ge dangling-bond 신호로 분리되었다. 가열 초기의 a-SiGe:H 박막 결함들의 스핀밀도의 증가는 수소 이탈에 기인하고, 또 고상결정화 과정에서 결정화된 정도와 Ge-db 스핀밀도의 변화는 서로 깊은 상관관계가 있음을 알 수 있었다. 특히 Ge 함유량이 큰 박막 (x=0.21, 0.67)에서 뿐만 아니라 소량의 Ge이 함유된 박막(x=0.05)에서도 Ge dangling-bond가 Si dangliong-bond 보다 고상결정화 과정에서 더 중요한 역할을 한다는 것을 알수 있었다. 또한 초기 열처리시 Si-H, Ge-H 결합에서 H의 이탈로 인하여 나타나는 Si-dangling bond, Ge-dangling bond 스핀밀도의 최대 증가 시간은 x 값에 의존하였는데 이러한 결과는 x값에 의존하는 Si-H, Ge-H 해리에너리지로 설명되어 질 수 있다. 층의 두께가 500 미만인 커패시터의 경우에 TiN과 Si3N4 의 계면에서 형성되는 슬릿형 공동(slit-like void)에 의해 커패시터의 유전특성이 파괴된다는 사실을 알게 되었으며, 이러한 슬릿형 공동은 제조 공정 중 재료에 따른 열팽창 계수와 탄성 계수 등의 차이에 의해 형성된 잔류응력 상태가 유전막을 기준으로 압축응력에서 인장 응력으로 바뀌는 분포에 기인하였다는 사실을 확인하였다.SiO2 막을 약화시켜 절연막의 두께가 두꺼워졌음에도 기존의 SiO2 절연막의 절연 파괴 전압 및 누설 전류오 비교되는 특성을 가졌다. 이중막을 구성하고 있는 안티퓨즈의 ON-저항이 단일막과 비교해 비슷한 것을 볼 수 잇는데, 그 이유는 TiO2에 포함된 Ti가 필라멘트에 포함되어 있어 필라멘트의 저항을 감소시켰기 때문으로 사료된다. 결국 이중막을 구성시 ON-저항 증가에 의한 속도 저하 요인은 없다고 할 수 있다. 5V의 절연파괴 시간을 측정한느 TDDB 테스트 결과 1.1$\times$103 year로 기대수치인 수십 년보다 높아 제안된 안티퓨즈의 신뢰성을 확보 할 수 있었다. 제안된 안티퓨즈의 이중 절연막의 두께는 250 이고 프로그래밍 전압은 9.0V이고, 약 65$\Omega$의 on 저항을 얻을수 있었다.보았다.다.다양한 기능을 가진 신소재 제조에 있다. 또한 경제적인 측면에서도 고부가 가치의 제품 개발에 따른 새로운 수요 창출과 수익률 향상, 기존의 기능성 안료를 나노(nano)화하여 나노 입자를 제조, 기존의 기능성 안료에 대한 비용 절감 효과등을 유도 할 수 있다. 역시 기술적인 측면에서도 특수소재 개발에 있어 최적의 나노 입자 제어기술 개발 및 나노입자를 기능성 소재로 사용하여 새로운 제품의 제조와 고압 기상 분사기술의 최적화에 의한 기능성 나노 입자 제조 기술을 확립하고 2차 오염 발생원인 유기계 항균제를 무기계 항균제로 대체할 수 있다. 이와 더불

  • PDF

Micro-Spot Atmospheric Pressure Plasma Production for the Biomedical Applications

  • Hirata, T.;Tsutsui, C.;Yokoi, Y.;Sakatani, Y.;Mori, A.;Horii, A.;Yamamoto, T.;Taguchi, A.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.44-45
    • /
    • 2010
  • We are currently conducting studies on culturing and biocompatibility assessment of various cells such as neural stem cells and induced pluripotent stem cells(IPS cells) on carbon nanotube (CNT), on nerve regeneration electrodes, and on silicon wafers with a focus on developing nerve integrated CNT based bio devices for interfacing with living organisms, in order to develop brain-machine interfaces (BMI). In addition, we are carried out the chemical modification of carbon nanotube (mainly SWCNTs)-based bio-nanosensors by the plasma ion irradiation (plasma activation) method, and provide a characteristic evaluation of a bio-nanosensor using bovine serum albumin (BSA)/anti-BSA binding and oligonucleotide hybridization. On the other hand, the researches in the case of "novel plasma" have been widely conducted in the fields of chemistry, solid physics, and nanomaterial science. From the above-mentioned background, we are conducting basic experiments on direct irradiation of body tissues and cells using a micro-spot atmospheric pressure plasma source. The device is a coaxial structure having a tungsten wire installed inside a glass capillary, and a grounded ring electrode wrapped on the outside. The conditions of plasma generation are as follows: applied voltage: 5-9 kV, frequency: 1-3 kHz, helium (He) gas flow: 1-1.5 L/min, and plasma irradiation time: 1-300 sec. The experiment was conducted by preparing a culture medium containing mouse fibroblasts (NIH3T3) on a culture dish. A culture dish irradiated with plasma was introduced into a $CO_2$-incubator. The small animals used in the experiment involving plasma irradiation into living tissue were rat, rabbit, and pick and are deeply anesthetized with the gas anesthesia. According to the dependency of cell numbers against the plasma irradiation time, when only He gas was flowed, the growth of cells was inhibited as the floatation of cells caused by gas agitation inside the culture was promoted. On the other hand, there was no floatation of cells and healthy growth was observed when plasma was irradiated. Furthermore, in an experiment testing the effects of plasma irradiation on rats that were artificially given burn wounds, no evidence of electric shock injuries was found in the irradiated areas. In fact, the observed evidence of healing and improvements of the burn wounds suggested the presence of healing effects due to the growth factors in the tissues. Therefore, it appears that the interaction due to ion/radicalcollisions causes a substantial effect on the proliferation of growth factors such as epidermal growth factor (EGF), nerve growth factor (NGF), and transforming growth factor (TGF) that are present in the cells.

  • PDF

Colossal Resistivity Change of Polycrystalline NiO Thin Film Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터 방법에 의한 다결정 NiO 박막의 비저항 변화)

  • Kim, Youmg-Eun;No, Young-Soo;Park, Dong-Hee;Choi, Ji-Won;Chae, Keun-Hwa;Kim, Tae-Hwan;Choi, Won-Kook
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.475-482
    • /
    • 2010
  • Polycrystalline NiO thin films were deposited on glass substrate by RF magnetron sputtering using only Ar as a plasma sputter gas. based on the analysis of x-ray diffraction (XRD), NiO films had a polycrystalline cubic (NaCl type) structure. NiO thin films grown below and above $200^{\circ}C$ showed preferred orientation of (111) and (220) respectively. It showed colossal change in electrical resistivity as much a ${\sim}10^7$ order form an insulating state of $105\;{\Omega}cm$ below $200^{\circ}C$ to a conducting state of $10^{-2}{\sim}10^{-1}\;{\Omega}cm$ above $300^{\circ}C$ such a Mott metal-insulator transition (MIT) in polycrystalline.

Dispersion Polymerization of Acrylate Monomers in Supercritical $CO_2$ using GMA-functionalized Reactive Surfactant (초임계 이산화탄소에서 Glycidyl methacrylate 반응성 계면활성제를 이용한 아크릴레이트의 분산중합)

  • Park, Kyung-Kyu;Kang, Chang-Min;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.256-262
    • /
    • 2010
  • Dispersion polymerization of methyl acrylate, ethyl acrylate, butyl acrylate, and glycidyl methacrylate were performed in supercritical $CO_2$ at $80\;^{\circ}C$ and 346 bar. Glycidyl methacrylate linked poly(dimethylsiloxane) (GMS-PDMS) surfactant, which was prepared by linking glycidyl methacrylate to monoglycidyl ether terminated PDMS with amino-propyltriethoxysilane, was used as surfactant for the dispersion polymerization in $CO_2$. The yield of the poly(alkyl acrylate) polymers, synthesized in $CO_2$ medium, decreased as the alkyl tail of the acrylate monomers increased. Poly(glycidyl methacrylate) and poly(methyl acrylate) were produced in bead form whereas poly(ethyl acrylate) and poly(butyl acrylate) were viscous liquid. The poly(glycidyl methacrylate) particles had a number average diameter of 2.45 ${\mu}m$ and monodisperse distribution. The poly(methyl acrylate) had a number average diameter of 0.52 ${\mu}m$ and the particle size distribution was bimodal. The glass transition temperatures ($T_g$) of the poly(glycidyl methacrylate) and the poly(alkyl acrylate) products were 4~9 K higher than the $T_g$ of the corresponding acrylate polymers synthesized in conventional processes.

Transport and optical properties of indium tin oxide films fabricated by reactive magnetron sputtering (제작 온도 및 산소 분압에 의존하는 인듐 주석 산화물의 전기적, 광학적 성질)

  • 황석민;주홍렬;박장우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.343-348
    • /
    • 2003
  • Indium tin oxide (ITO) thin films (170 nm) were grown by DC magnetron sputtering deposition on Coming glass substrates without a post annealing. The electrical transport and optical properties of the films have been investigated as a function of deposition temperature $T_{s}$ (10$0^{\circ}C$$\leq$ $T_{s}$$\leq$35$0^{\circ}C$) and oxygen partial pressure $P_{o_{2}}$, (0 $P_{o_{2}}$ $\leq$ 10$^{-5}$ torr). Films were deposited from a high density (99% of theoretical density) ITO target (I $n_2$ $O_3$: Sn $O_2$= 90 wt% : 10 wt%) made of ITO nano powders. With an increase of $T_{s}$ the electrical resistivity p of ITO thin films was found to decrease, but the mobility $\mu$$_{H}$ was found to increase. The carrier density nu shows the maximum value of 6.6$\times$10$^{20}$ /㎤ at $T_{s}$ = 30$0^{\circ}C$. At fixed Is, with an increase of the oxygen partial pressure, $n_{H}$ and $\mu$$_{H}$ were found to decrease, but p was found to increase. The minimum resistivity and maximum mobility values of the ITO films were found to be 0.3 mΩ.cm and 39.3 $\textrm{cm}^2$/V.s, respectively. The visible transmittance of the ITO films was above 80%.. 80%..

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors (Carbon Nano Tube 및 산화그래핀을 첨가한 폴리우레아 복합재 제조 및 그 화학적 특성 분석)

  • Kim, Hyeongtae;Lee, Jihyun;An, Woo-Jin;Park, Jun Hong
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.136-143
    • /
    • 2021
  • Polyurea has been investigated as a polymer matrix for composite materials because of its high mechanical strength. Although polyurea has a similar chemical structure to polyurethane, it has much higher strength and durability. In this study, the fabrication of polyurea composites reinforced with carbon nanotube (CNT) and graphene oxide (GO) is demonstrated to enhance the tensile strength of the glass fibers composite. Using FTIR and Raman spectroscopies, the chemical structures of polyurea, CNT, and GO are investigated. As a result, spectroscopy analysis reveals that the chemical structure of CNT, GO, and polyurea is maintained during the fabrication of the composite structure. Scanning electron microscopy reveals the uniform distribution of CNT and GO across the polyurea matrix. The reinforcement of 1 wt% CNT in polyurea enhances the tensile strength of CNT/polyurea composites. In contrast, the reinforcement of GO in polyurea induces the degradation of the tensile strength of GO/polyurea composites.

Effect of Amino Modified Siloxanes with Two Different Molecular Weights on the Properties of Epoxy Composites for Adhesives for Micro Electronics (전자소재 접착제용 에폭시에 두 종의 다른 당량수를 갖는 아미노 변성 실록산이 미치는 영향)

  • Yu, Kihwan;Kim, Daeheum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.104-108
    • /
    • 2011
  • In the non-conductive adhesives (NCAs) for adhesion of micro electro mechanical system (MEMS), there are some problems such as delamination and cracking resulting from the large differences of coefficients of thermal expansion (CTE) between NCAs and substrates. So, the addition of inorganic particles such as silica and nano clay to the CTEs composit have been applied to reduce the CTEs of the adhesives. Additions of the flexibilizers such as siloxanes have also been performed to improve the flexibility of epoxy composite. Amino modified siloxane (AMSs) were used to improve compatibility between epoxy and siloxane. In this study, glass transition temperatures (Tg) and moduli of those composites were measured to confirm the effects of AMS with two different equivalents on thermal/mechanical properties of AMS/epoxy composites. Tg of KF-8010/epoxy composites decreased from 148 to $122^{\circ}C$ and those of X-22-161A/epoxy composites decreased from 148 to $121^{\circ}C$. Moduli of KF-8010/epoxy composites decreased from 2648 to 2143 MPa by adding KF-8010 and moduli of X-22-161A/epoxy composites decreased from 2648 to 2014 MPa. In short, using long Si-O chain AMS leads to a greater decrease in moduli. However, haven't showed significant differences in Tg's.