Browse > Article
http://dx.doi.org/10.17702/jai.2021.22.4.136

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors  

Kim, Hyeongtae (School of Materials Science and Engineering, Gyeongsang National University)
Lee, Jihyun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
An, Woo-Jin (School of Mechanical Engineering, Gyeongsang National University)
Park, Jun Hong (School of Materials Science and Engineering, Gyeongsang National University)
Publication Information
Journal of Adhesion and Interface / v.22, no.4, 2021 , pp. 136-143 More about this Journal
Abstract
Polyurea has been investigated as a polymer matrix for composite materials because of its high mechanical strength. Although polyurea has a similar chemical structure to polyurethane, it has much higher strength and durability. In this study, the fabrication of polyurea composites reinforced with carbon nanotube (CNT) and graphene oxide (GO) is demonstrated to enhance the tensile strength of the glass fibers composite. Using FTIR and Raman spectroscopies, the chemical structures of polyurea, CNT, and GO are investigated. As a result, spectroscopy analysis reveals that the chemical structure of CNT, GO, and polyurea is maintained during the fabrication of the composite structure. Scanning electron microscopy reveals the uniform distribution of CNT and GO across the polyurea matrix. The reinforcement of 1 wt% CNT in polyurea enhances the tensile strength of CNT/polyurea composites. In contrast, the reinforcement of GO in polyurea induces the degradation of the tensile strength of GO/polyurea composites.
Keywords
CNT; Graphene oxide; Polyurea; Composite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Lee and M. Mitici, Reliability Engineering & System Safety, 202, 107052 (2020).   DOI
2 H. Lee, G. Li, A. Rai and A. Chattopadhyay, Advanced Engineering Informatics, 44, 101071 (2020).   DOI
3 R. Nasi, E. Honkavaara, M. Blomqvist, P. Lyytikainen-Saarenmaa, T. Hakala, N. Viljanen, T. Kantola and M. Holopainen, Urban Forestry & Urban Greening, 30, 72, 83 (2018).
4 X. Hu, B. Pang, F. Dai and K. H. Low, IEEE Access, 8, 150162 (2020).   DOI
5 E. Vinogradov, F. Minucci and S. Pollin, IEEE Vehicular Technology Magazine, 15, 88 (2020).   DOI
6 L. Zhu, X. Cheng and F.-G. Yuan, Measurement, 77, 40 (2016).   DOI
7 H. Yan, S.-H. Yang, Y. Chen and S. A. Fahmy, IEEE Wireless Communications Letters, 10, 1410 (2021).   DOI
8 K. Kang, S. Park, S. O. Cho, K. Choi and H. Ju, Fuel Cells, 14, 694 (2014).   DOI
9 M. Kaufmann, D. Zenkert and P. Wennhage, Structural and Multidisciplinary Optimization, 41, 325 (2010).   DOI
10 M. Ramesh, R. Vijayanandh, G. R. Kumar, V. Mathaiyan, P. Jagadeeshwaran and M. S. Kumar, IOP Conference Series: Materials Science and Engineering 2021, 1017, 012032 (2021).
11 N. Karakaya, M. Papila and G. Ozkoc, Composites Part A: Applied Science and Manufacturing, 131, 105771 (2020).   DOI
12 Y. He, Q. Chen, H. Liu, L. Zhang, D. Wu, C. Lu, W. OuYang, D. Jiang, M. Wu and J. Zhang, Macromolecular Materials and Engineering, 304, 1900166 (2019).   DOI
13 M. K. Idris, J. Qiu, G. W. Melenka and G. Grau, Engineering Research Express, 2, 025022 (2020).   DOI
14 J. Y. Lee and G. J. Collins, Advanced Optical Materials, 8, 1902178 (2017).   DOI
15 S. K. Das and S. Roy, IOP Conference Series: Materials Science and Engineering 2018, 402, 012077 (2018).
16 J. Wu and D. Chung, Carbon, 40, 445 (2002).   DOI
17 M. Uddin, L. Le, R. Nair and R. Asmatulu, Journal of Engineering Materials and Technology, 141 (2019).
18 D. Rahmatabadi, A. Shahmirzaloo, M. Farahani, M. Tayyebi and R. Hashemi, Materials Science and Engineering: A, 753, 70 (2019).   DOI
19 D. Han, H. Mei, S. Farhan, S. Xiao, J. Xia and L. Cheng, Journal of the American Ceramic Society, 100, 2243 (2017).   DOI
20 T. Yang, D. Xie, Z. Li and H. Zhu, Materials Science and Engineering: R: Reports, 115, 1 (2017).   DOI
21 V. Shahi, V. Alizadeh and A. V. Amirkhizi, Mechanics of Time-Dependent Materials, 25, 447 (2021).   DOI
22 L. Xue, W. Mock Jr and T. Belytschko, Mechanics of Materials, 42, 981 (2010).   DOI
23 A. Mikhalchan, A. M. Banas, K. Banas, A. M. Borkowska, M. Nowakowski, M. B. Breese, W. M. Kwiatek, C. Paluszkiewicz and T. E. Tay, Chemistry of Materials, 30, 1856 (2018).   DOI
24 M. Mrukiewicz, K. Kowiorski, P. Perkowski, R. Mazur and M. Djas, Beilstein Journal of Nanotechnology, 10, 71 (2019).   DOI
25 X. Qian, L. Song, Q. Tai, Y. Hu and R. K. Yuen, Composites Science and Technology, 74, 228 (2013).   DOI
26 T. Arunkumar and S. Ramachandran, International Journal of Ambient Energy, 38, 781 (2017).   DOI
27 N. Iqbal, P. Sharma, D. Kumar and P. Roy, Construction and Building Materials, 175, 682 (2018).   DOI
28 N. Iqbal, M. Tripathi, S. Parthasarathy, D. Kumar and P. Roy, Progress in Organic Coatings, 123, 201 (2018).   DOI
29 T. Liu, H. Zhao, F. Mao and J. Li, Materials Research Express, 6, 125619 (2019).   DOI
30 M. Gonzalez-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vazquez-Naya, H. Gonzalez-Diaz and C. R. Munteanu, Journal of Chemical Information and Modeling, 57, 1029 (2017).   DOI
31 K. K. H. De Silva, H.-H. Huang and M. Yoshimura, Applied Surface Science, 447, 338 (2018).   DOI
32 K. Zhu, C. Jiang, Z. Li, L. Du, Y. Zhao, Z. Chai, L. Wang and M. Chen, Materials & Design, 107, 333 (2016).   DOI
33 K.-Q. Deng, J.-h. Zhou and X.-F. Li, Colloids and Surfaces B: Biointerfaces, 101, 183 (2013).   DOI
34 S. K. Basu, L. Scriven, L. Francis and A. McCormick, Progress in Organic Coatings, 53, 1 (2005).   DOI
35 B. S. Hadavand, M. Pishvaei and M. Hosseininiasari, Progress in Organic Coatings, 131, 60 (2019).   DOI
36 W. Zheng, W. Chen, S. Ren and Y. Fu, Polymer, 163, 171 (2019).   DOI
37 A. Al-Fatlawi, K. Jarmai and G. Kovacs, Polymers, 13, 834 (2021).   DOI
38 Y. Shi, L. Zhao, Z. Li, Z. Li, D.-B. Xiong, Y. Su, S. Osovski and Q. Guo, Materials Science and Engineering: A, 764, 138273 (2019).   DOI
39 H. Liu, M. H. C. Man and K. H. Low, Aerospace Science and Technology, 113, 106645 (2021).   DOI
40 C. E. Riboldi and F. Gualdoni, Aerospace Science and Technology, 58, 134 (2016).   DOI
41 G. Xian, R. Guo, C. Li and B. Hong, Journal of Materials Research and Technology, 14, 2812 (2021).   DOI
42 H. Lee, Y. H. Kim, Y. W. Lim, J. Jang, S. M. Kang and B. S. Bae, Advanced Optical Materials, 8, 1902178 (2020).   DOI
43 J. C. Marx, S. J. Robbins, Z. A. Grady, F. L. Palmieri, C. J. Wohl and A. Rabiei, Applied Surface Science, 505, 144114 (2020).   DOI
44 T. Windhorst and G. Blount, Materials & Design, 18, 11 (1997).   DOI
45 S. R. Madara, N. S. Raj and C. P. Selvan, IOP Conference Series: Materials Science and Engineering 2018, 141, 012011 (2018).
46 S. A. Tekalur, A. Shukla and K. Shivakumar, Composite Structures, 84, 271 (2008).   DOI
47 J. Fang, A. Kelarakis, D. Wang, E. P. Giannelis, J. A. Finlay, M. E. Callow and J. A. Callow, Polymer, 51, 2636 (2010).   DOI
48 P.-C. Ma, S.-Y. Mo, B.-Z. Tang and J.-K. Kim, Carbon, 48, 1824 (2010).   DOI
49 H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He and Z.-Z. Yu, ACS Applied Materials & Interfaces, 3, 918 (2011).   DOI
50 D. Mohotti, T. Ngo, S. N. Raman, M. Ali and P. Mendis, Materials & Design (1980-2015), 56, 696 (2014).   DOI
51 M. Shimokawa, H. Yoshida, T. Komatsu, R. Omachi and K. Kudo, Gels, 4, 41 (2018).   DOI
52 S. Do, J. Canilao, S. Stepp and G. Youssef, Polymer Bulletin, 1 (2021).
53 M. Wortmann, N. Frese, A. Heide, J. Brikmann, O. Strube, R. Dalpke, A. Golzhauser, E. Moritzer and B. Husgen, Polymer-Plastics Technology and Engineering, 57, 1524 (2018).   DOI
54 K. Deng, J. Zhou and X. Li, Electrochimica Acta, 95, 18 (2013).   DOI
55 A. Godara, L. Gorbatikh, G. Kalinka, A. Warrier, O. Rochez, L. Mezzo, F. Luizi, A. W. Van Vuure, S. V. Lomov and I. Verpoest, Composites Science and Technology, 70, 1346 (2010).   DOI
56 M. Aqeel, S. Anjum, M. Imran, M. Ikram, H. Majeed, M. Naz, S. Ali and M. Ahmad, Materials Research Express, 6, 086215 (2019).   DOI