• 제목/요약/키워드: nano-doping

검색결과 219건 처리시간 0.035초

나노구조 이중게이트 MOSFET에서 전도중심의 파라미터 의존성 (Parameter dependent conduction path for nano structure double gate MOSFET)

  • 정학기
    • 한국정보통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.541-546
    • /
    • 2008
  • 본 연구에서는 분석학적 모델을 이용하여 나노구조 이중게이트 MOSFET의 전도현상을 고찰하고자 한다. 분석학적 모델을 유도하기 위하여 포아슨방정식을 이용하였다. 전류전도에 영향을 미치는 전도메카니즘은 열방사전류와 터널링전류를 사용하였으며 본 연구의 모델이 타당하다는 것을 입증하기 위하여 서브문턱스윙값에 대하여 이차원 시뮬레이션 값과 비교하였다. 이중게이트 MOSFET의 구조적 파라미터인 게이트길이, 게이트 산화막 두께, 채널두께에 따라 전도중심의 변화와 전도중심이 서브문턱스윙에 미치는 영향을 고찰하였다. 또한 채널 도핑농도에 따른 전도중심의 변화를 고찰함으로써 이중게이트 MOSFET의 타당한 채널도핑농도를 결정하였다.

Ferromagnetism and p-type Conductivity in Laser-deposited (Zn,Mn)O Thin Films Codoped by Mg and P

  • Kim, Hyo-Jin;Kim, Hyoun-Soo;Kim, Do-Jin;Ihm, Young-Eon;Choo, Woong-Kil;Hwang, Chan-Yong
    • Journal of Magnetics
    • /
    • 제12권4호
    • /
    • pp.144-148
    • /
    • 2007
  • We report on the observation of p-type conductivity and ferromagnetism in diluted magnetic semiconductor $(Zn_{0.97}Mg_{0.01}Mn_{0.02})O:P$ films grown on $SiO_2/Si$ substrates by pulsed laser deposition. The p-type conduction with hole concentration over $10^{18}cm^{-3}$ is obtained by codoping of Mg and P followed by rapid thermal annealing in an $O_2$ atmosphere. Structural and compositional analyses for the p-type $(Zn_{0.97}Mg_{0.01}Mn_{0.02})O:P$ films annealed at $800^{\circ}C$ indicates that highly c-axis oriented homogeneous films were grown without any detectable formation of secondary phases. The films were found to be transparent in the visible range. The magnetic measurements clearly revealed an enhancement of room temperature ferromagnetism by p-type doping.

나노 ZnO 분말을 이용한 가스센서 제작 및 특성연구 (Characteristics and Preparation of Gas Sensor Using Nano-ZnO Powders)

  • 유일
    • 한국재료학회지
    • /
    • 제25권6호
    • /
    • pp.300-304
    • /
    • 2015
  • Nanorod ZnO and spherical nano ZnO for gas sensors were prepared by hydrothermal reaction method and hydrazine method, respectively. The nano-ZnO gas sensors were fabricated by a screen printing method on alumina substrates. The gas sensing properties were investigated for hydrocarbon gas. The effects of Co concentration on the structural and morphological properties of the nano ZnO:Co were investigated by X-ray diffraction and scanning electron microscope (SEM), respectively. XRD patterns revealed that nanorod and spherical ZnO:Co with a wurtzite structure were grown with (100), (002), (101) peaks. The sensitivity of nanorod and spherical ZnO:Co sensors was measured for 5 ppm $CH_4$ and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity to the $CH_4$ and $CH_3CH_2CH_3$ gas of spherical nano ZnO:Co sensors was observed at Co 6 wt%. The spherical nano ZnO:Co sensor exhibited a higher sensitivity to hydrocarbon gas than nanorod ZnO.

The Effects of Mn-doping and Electrode Material on the Resistive Switching Characteristics of ZnOxS1-x Thin Films on Plastic

  • Han, Yong;Cho, Kyoungah;Park, Sukhyung;Kim, Sangsig
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권1호
    • /
    • pp.24-27
    • /
    • 2014
  • In this study, the effects of Mn-doping and the electrode materials on the memory characteristics of $ZnO_xS_{1-x}$ resistive random access memory (ReRAM) devices on plastic are investigated. Compared with the undoped Al/$ZnO_xS_{1-x}$/Au and Al/$ZnO_xS_{1-x}$/Cu devices, the Mn-doped ones show a relatively higher ratio of the high resistance state (HRS) to low resistance state (LRS), and narrower resistance distributions in both states. For the $ZnO_xS_{1-x}$ devices with bottom electrodes of Cu, more stable conducting filament paths are formed near these electrodes, due to the relatively higher affinity of copper to sulfur, compared with the devices with bottom electrodes of Au, so that the distributions of the set and reset voltages get narrower. For the Al/$ZnO_xS_{1-x}$/Cu device, the ratio of the HRS to LRS is above $10^6$, and the memory characteristics are maintained for $10^4$ sec, which values are comparable to those of ReRAM devices on Si or glass substrates.

MOCVD로 성장된 ZnO 박막의 미세구조 변화 (Morphological Transitions of MOCVD-Grown ZnO Thin Films)

  • 박재영;이동주;이병택;김상섭
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.59-59
    • /
    • 2003
  • ZnO는 상온에서 3.37 eV의 넓은 밴드갭을 가지는 직접천이형 반도체이다. 상온에서 60 meV의 큰 엑시톤 결합에너지를 가짐으로 인해 엑시톤 재결합에 의한 강한 UV 레이저 발진효과를 기대할 수 있다. 이러한 장점을 갖는 ZnO 박막을 이용하여 광소자 등에 응용하기 위하여 양질의 ZnO 박막성장이 필수적이며, 이를 위해 MBE, MOCVD, PLD, rf magnetron sputtering 등 다양한 증착방법을 통한 연구결과가 보고되고 있다. 또한 p형 불순물인 As과 N 도핑 및 Ga과 N의 co-doping 방법 등을 통하여 p형 ZnO 박막을 제조하였음이 보고되고 있으나 재현성 문제 등으로 인해 계속적인 연구가 진행되고 있다. 본 연구에서는 MOCVD를 이용하여 A1$_2$O$_3$(0001) 기판 위에 ZnO 박막을 성장시켰다. Zn 전구체로 DEZn을 사용하였으며, 산소 source로 $O_2$를 사용하였다. 증착온도, Ⅵ/II 비율, 반응기 압력 등 MOCVD의 중요한 공정변수들의 체계적인 변화에 따른 박막성장 양상을 조사하였다. 증착 조건에 따라 ZnO 입자의 모양이 주상(column), nano-rod, nano-needle, nano-wire 등으로 급격하게 변화됨을 확인하였으며, 이러한 입자의 모양과 결정성장 방향 및 광학적 특성과의 상관관계의 해석을 시도하였다.

  • PDF

$SiO_2$ coating of ZnS:Cu,Cl blue-green nano phosphor

  • Lee, Hong-Ro ;Park, Chang-Hyun ;Cho, Tai-Yeon;Han, Sang-Do
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.75-76
    • /
    • 2007
  • ZnS:Cu,Cl phosphor was coated by solid-gel reaction with $SiO_2$ outside layer. The effect of $Cu^{2+}$-doping concentration has been investigated on the luminescence characteristics of ZnS:Cu,Cl blue-green phosphors for inorganic electro luminescent device. Also, SiO2 coated layers' effect on luminescence characteristics. Evaluation of luminescence characteristics dependent on the synthesis conditions is important to get high-performance phosphors properties. EL and PL properties such as luminescence intensity and chromaticity of ZnS:Cu,Cl phosphors synthesized with different concentration of activator, $Cu^{2+}$, were analysed separately

  • PDF

Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성 (Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films)

  • 김근우;서용준;성창훈;박근영;조호제;허시내;구본흔
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.805-810
    • /
    • 2012
  • Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.

Electrical and Optical Properties of Ga-doped SnO2 Thin Films Via Pulsed Laser Deposition

  • Sung, Chang-Hoon;Kim, Geun-Woo;Seo, Yong-Jun;Heo, Si-Nae;Huh, Seok-Hwan;Chang, Ji-Ho;Koo, Bon-Heun
    • 한국표면공학회지
    • /
    • 제44권4호
    • /
    • pp.144-148
    • /
    • 2011
  • $Ga_2O_3$ doped $SnO_2$ thin films were grown by using pulsed laser deposition (PLD) technique on glass substrate. The optical and electrical properties of these films were investigated for different doping concentrations, oxygen partial pressures, substrate temperatures, and film thickness. The films were deposited at different substrate temperatures (room temperature to $600^{\circ}C$). The best opto-electrical properties is shown by the film deposited at substrate temperature of $300^{\circ}C$ with oxygen partial pressure of 80 m Torr and the gallium concentration of 2 wt%. The as obtained lowest resistivity is $9.57{\times}10^{-3}\;{\Omega}cm$ with the average transmission of 80% in the visible region and an optical band gap (indirect allowed) of 4.26 eV.

휘발성유기화합물가스에 대한 폴리아닐린 센서의 감도 향상 (Sensitivity Enhancement of Polyaniline Sensor to Volatile Organic Compounds)

  • 유준부;유비;임정옥;변형기;허증수
    • 한국재료학회지
    • /
    • 제17권8호
    • /
    • pp.433-436
    • /
    • 2007
  • Nano-structured polyaniline have been synthesized by interfacial polymerization method at room temperature. An aqueous solution of aniline in chloroform and another solution of ammonium peroxydisulfate in doping acid were prepared at different times terminated with methanol at room temperature. SEM, UV-vis were used to characterize the polyaniline with regard to their morphology and structure. The diameter and length of polyaniline can be controlled by the reaction time. Nano-structured polyaniline were found to have superior sensitivity for volatile organic compounds(VOCs). As the reaction time to increase from 30minute to 2hours the sensitivity were decreased to VOCs vapors. The sensitivity of Nano-structured polyaniline sensor appeared to VOCs better than the sensitivity of chemical synthesis sensors. The sensitivity of Nano-structured polyaniline sensor improved benzene vapors.

Improved Cycle Performance of Sulfur-Doped LiFePO4 Material at High Temperatures

  • Lee, Seung-Byung;Cho, Seung-Hyun;Aravindan, Vanchiappan;Kim, Hyun-Soo;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2223-2226
    • /
    • 2009
  • Pristine and sulfur-doped (LiFe$PO_{3.98}S_{0.03}$) lithium iron phosphates were synthesized by a sol-gel method. The XRD pattern of the prepared materials suggested an orthorhombic structure with a Pnma space group and an absence of impurities. The Li/LiFe$PO_4$ or LiFe$PO_{3.98}S_{0.03}$ cells were employed for cycling studies at various temperatures (25, 50 and $60\;{^{\circ}C}$). In all cases, the Li/LiFe$PO_{3.98}S_{0.03}$ cell showed an improved performance with a stable discharge behavior of ~155 mA$hg^{-1}$. Nevertheless, pristine LiFeP$O_4$ cells presented poor discharge behavior at elevated temperatures, especially $60\;{^{\circ}C}$.