Browse > Article
http://dx.doi.org/10.5695/JKISE.2011.44.4.144

Electrical and Optical Properties of Ga-doped SnO2 Thin Films Via Pulsed Laser Deposition  

Sung, Chang-Hoon (School of Nano & Advanced Materials Engineering, Changwon National University)
Kim, Geun-Woo (School of Nano & Advanced Materials Engineering, Changwon National University)
Seo, Yong-Jun (School of Nano & Advanced Materials Engineering, Changwon National University)
Heo, Si-Nae (School of Nano & Advanced Materials Engineering, Changwon National University)
Huh, Seok-Hwan (Korea FCB Manufacturing Engineering G., Samsung Electro-Mechanics)
Chang, Ji-Ho (Major of Semiconductor Physics, Korea Maritime University)
Koo, Bon-Heun (School of Nano & Advanced Materials Engineering, Changwon National University)
Publication Information
Journal of the Korean institute of surface engineering / v.44, no.4, 2011 , pp. 144-148 More about this Journal
Abstract
$Ga_2O_3$ doped $SnO_2$ thin films were grown by using pulsed laser deposition (PLD) technique on glass substrate. The optical and electrical properties of these films were investigated for different doping concentrations, oxygen partial pressures, substrate temperatures, and film thickness. The films were deposited at different substrate temperatures (room temperature to $600^{\circ}C$). The best opto-electrical properties is shown by the film deposited at substrate temperature of $300^{\circ}C$ with oxygen partial pressure of 80 m Torr and the gallium concentration of 2 wt%. The as obtained lowest resistivity is $9.57{\times}10^{-3}\;{\Omega}cm$ with the average transmission of 80% in the visible region and an optical band gap (indirect allowed) of 4.26 eV.
Keywords
Transparent conducting oxide; $Ga_2O_3:SnO_2$ thin films; Pulsed laser deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Shanthi, C. Subramanian, P. Ramasamy, J. Cryst. Growth, 197 (1999) 858.   DOI
2 S.-M. Park, T. Ikegami, K. Ebihara, P.-K. Shin, Appl. Surf. Sci., 253 (2006) 1522.   DOI
3 J. C. Manifacier, Thin Solid Films, 90 (1982) 297.   DOI
4 H.-L. Ma, X.-T. Hao, J. Ma, Y.-G. Yang, J. Huang, D.-H. Zhang, X. G. Xu, Appl. Surf. Sci., 191 (2002) 313.   DOI
5 C. Agashe, J. Hupkes, G. Schope, M. Berginski, Solar Energy Materials & Solar Cells, 93 (2009) 1256.   DOI
6 M. S. Anwar, S. Kumar, N. Archi, F. Ahmed, Y. J. Seo, C. G. Lee, B. H. Koo, Journal of Alloys and Compounds, 509 (2011) 4525.   DOI
7 T. Hitosugi, N. Yamada, N. L. H. Hoang, J. Kasai, S. Nakao, T. Shimada, T. Hasegawa, Thin Solid Films, 517 (2009) 3106.   DOI
8 H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, D. B. Chrisey, Appl. Phys. Lett., 74 (1999) 3444.   DOI
9 O. K. Varghese, L. K. Malhotra, J. Appl. Phys., 87 (2000) 7457.   DOI
10 H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, D. B. Chrisey, J. Appl. Phys., 86 (1999) 6451.   DOI
11 H. Kim, J. S. Horwitz, G. P. Kushto, Z. H. Kafafi, D. B. Chrisey, Appl. Phys. Lett., 79 (2001) 284.   DOI
12 E. M. Kaidashev, M. Lorenz, H. Von Wenckstern, A. Rahm, H. C. Semmelhach, K. H. Han, G. Bennodorf, C. Bundesmann, H. Hochmuth, M. Grundamann, Appl. Phys. Lett., 82 (2003) 3901.   DOI
13 H. Kim, A. Pique, Appl. Phys., 84 (2004) 218.
14 K. Tonooka, T.-W. Chiu, N. Kikuchi, Appl. Surf. Sci., 255 (2009) 9695.   DOI