• Title/Summary/Keyword: nano-diamond

Search Result 172, Processing Time 0.021 seconds

A Study on the Surface Polishing of Diamond Thin Films by Thermal Diffusion (열확산에 의한 다이아몬드 박막의 표면연마에 관한 연구)

  • Bae, Mun Ki;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.75-80
    • /
    • 2021
  • The crystal grains of polycrystalline diamond vary depending on deposition conditions and growth thickness. The diamond thin film deposited by the CVD method has a very rough growth surface. On average, the surface roughness of a diamond thin film deposited by CVD is in the range of 1-100 um. However, the high surface roughness of diamond is unsuitable for application in industrial applications, so the surface roughness must be lowered. As the surface roughness decreases, the scattering of incident light is reduced, the heat conduction is improved, the mechanical surface friction coefficient can be lowered, and the transmittance can also be improved. In addition, diamond-coated cutting tools have the advantage of enabling ultra-precise machining. In this study, the surface roughness of diamond was improved by thermal diffusion reaction between diamond carbon atoms and ferrous metals at high temperature for diamond thin films deposited by MPCVD.

Nanotexturing and Post-Etching for Diamond Wire Sawn Multicrystalline Silicon Solar Cell (다이아몬드 와이어에 의해 절단된 다결정 실리콘 태양전지의 나노텍스쳐링 및 후속 식각 연구)

  • Kim, Myeong-Hyun;Song, Jae-Won;Nam, Yoon-Ho;Kim, Dong-Hyung;Yu, Si-Young;Moon, Hwan-Gyun;Yoo, Bong-Young;Lee, Jung-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.301-306
    • /
    • 2016
  • The effects of nanotexturing and post-etching on the reflection and quantum efficiency properties of diamond wire sawn (DWS) multicrystalline silicon (mc-Si) solar cell have been investigated. The chemical solutions, which are acidic etching solution (HF-$HNO_3$), metal assisted chemical etching (MAC etch) solutions ($AgNO_3$-HF-DI, HF-$H_2O_2$-DI) and post-etching solution (diluted KOH at $80^{\circ}C$), were used for micro- and nano-texturing at the surface of diamond wire sawn (DWS) mc-Si wafer. Experiments were performed with various post-etching time conditions in order to determine the optimized etching condition for solar cell. The reflectance of mc-Si wafer texturing with acidic etching solution showed a very high reflectance value of about 30% (w/o anti-reflection coating), which indicates the insufficient light absorption for solar cell. The formation of nano-texture on the surface of mc-Si contributed to the enhancement of light absorption. Also, post-etching time condition of 240 s was found adequate to the nano-texturing of mc-Si due to its high external quantum efficiency of about 30% at short wavelengths and high short circuit current density ($J_{sc}$) of $35.4mA/cm^2$.

Synthesis of Single Crystal Diamond by Variation of Deposition Pressure by HFCVD (HFCVD에 의한 증착압력 변화에 따른 Single Crystal Diamond 합성)

  • Kim, Min Su;Bae, Mun Ki;Kim, Seong-Woo;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.20-24
    • /
    • 2020
  • Single crystal diamonds are in great demand in such fields as mechanical, electronic applications and optoelectronics. Large area single crystal diamonds are attracting attention in future industries for mass production and low cost. In this study, hot filament CVD (HFCVD) is used to grow large area single crystal diamond. However, the growth rate of large area single crystal diamond using HFCVD is known to be very low. The goal of this study is to use single crystal diamond substrates in HFCVD with methane-hydrogen gas mixtures to increase the growth rate of single crystal diamond and to optimize the conditions by analysing the effects of deposition conditions for high quality crystallinity. The deposition pressure, the ratio of CH4/H2 gas, the substrate temperature and the distance between the filament and the substrate were optimized. The sample used a 4×4 (mm2) size single crystal diamond substrate (100), the CH4/H2 gas ratio was fixed at 5%, the substrate temperature was synthesized to about 1000℃. At this time, the deposition pressure was changed to three types of 50, 75, 85 Torr and deposited. Finally, optimization was investigated under pressure conditions to analyse the growth rate and quality of single crystal diamond.

The Thermal Conductivity Characteristics of Carbon Block with Nano-Diamond (나노다이아몬드가 첨가된 탄소블록의 열전도도 특성)

  • Jun Soong Lee;Ji Hun Mun;Sungwook Joo;Seung Uk Lee;Min Il Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.608-612
    • /
    • 2023
  • Nano-diamond (ND) was added during the carbon block preparation process to increase the thermal conductivity of the carbon block. Added ND controlled the generated pore of carbon block due to the volatilization of the binder pitch during the carbonization process. The ND was added to the kneading process of coke and binder pitch, and carbon blocks were prepared by pressing and carbonization. As the amount of added ND increased, the ND ratio of the carbon block increased. The added ND made a pass-way for generated gas by volatilizing the binder pitch during the carbonization process, increasing the density of the carbon block and reducing the porosity. The thermal conductivity of the carbon block was improved by increased density, lowered porosity, and the high thermal conductivity of added ND.

Bonding structure of the DLC films deposited by RE-PECVD (RE-PECVD법에 의해 증착된 DLC박막의 결합 특성)

  • 최봉근;신재혁;안종일;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • The diamond-like carbon (DLC) films were deposited on the Si (100) wafer by a rf-PECVD method as a function of the mixture rate of methane-hydrogen gas and bias voltage. The bonding structure and mechanical properties of these deposited DLC films were investigated using FT-IR, Raman, and nano-indenter. The deposition rates of DLC films increased with increased flow rate of methane in the gas mixtures and increased bias voltage. The $sp^3/sp^2$ bonding ratio of carbon in thin film and the hardness increased with increasing flow rate of hydrogen in the gas mixtures and increasing bias voltage.

Nano-Mechanical and Tribological Characteristics of Ultra-Thin Amorphous Carbon Film Investigated by AFM

  • Chung, Koo-Hyun;Lee, Jae-Won;Kim, Dae-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1772-1781
    • /
    • 2004
  • The mechanical as well as tribological characteristics of coating films as thin as a few nm become more crucial as applications in micro-systems grow. Especially, the amorphous carbon film has a potential to be used as a protective layer for micro-systems. In this work, quantitative evaluation of nano-indentation, scratching, and wear tests were performed on the 7nm thick amorphous carbon film using an Atomic Force Microscope (AFM). It was shown that AFM-based nano-indentation using a diamond coated tip can be feasibly utilized for mechanical characterization of ultra-thin films. Also, it was found that the critical load where the failure of the carbon film occurred was about 18${\mu}$N by the ramp load scratch test. Finally, the wear experimental results showed that the quantitative wear rate of the carbon film ranged 10$\^$-9/~10$\^$-8/ ㎣ /N cycle. These experimental methods can be effectively utilized for a better understanding the mechanical and tribological characteristics at the nano-scale.

Analysis of Size Effect of Nano Scale Machining Based on Normal Stress and Indentation Theories (수직응력과 압입이론에 기반한 나노스케일 기계가공에서의 크기효과 분석)

  • Jeon, Eun-chae;Lee, Yun-Hee;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.1-6
    • /
    • 2018
  • Recently nano meter size pattern (sub-micro scale) can be machined mechanically using a diamond tool. Many studies have found a 'size effect' which referred to a specific cutting energy increase with the decrease in the uncut chip thickness at micro scale machining. A new analysis method was suggested in order to observe 'size effect' in nano scale machining and to verify the cause of the 'size effect' in this study. The diamond tool was indented to a vertical depth of 1,000nm depth in order to simplify the stress state and the normal force was measured continuously. The tip rounding was measured quantitatively by AFM. Based on the measurements and theoretical analysis, it was verified that the main cause of the 'size effect' in nano scale machining is geometrically necessary dislocations, one of the intrinsic material characteristics. st before tool failure.

Effects of oxygen additive on structural properties and metal/diamond junction characteristics of nano-crystalline diamond thin films (산소첨가가 나노결정 다이아몬드 박막의 구조적 물성 및 금속과의 접합특성에 미치는 영향)

  • Choi, Sung-Ho;Park, Jae-Hyun;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1700-1702
    • /
    • 2004
  • Diamond films including nanocrystallites are grown by microwave plasma chemical vapor deposition using $O_2$ additives and negative substrate bias at growth step. Effects of growth parameters on film properties are characterized by Raman spectra, SEM, and AFM images. It is found that the surface roughness and the microstructure of grown films can be controlled by changing $O_2$ gas ratio. The I-V characteristics are also investigated in terms of growth conditions of diamond films. The surface roughness and the $sp^2$ phase of the grown diamond films turn out to be crucial factors for reducing leakage currents at diamond/metal interfaces.

  • PDF

Effects of Nano-sized Diamond on Wettability and Interfacial Reaction for Immersion Sn Plating

  • Yu, A-Mi;Kang, Nam-Hyun;Lee, Kang;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.59-63
    • /
    • 2010
  • Immersion Sn plating was produced on Cu foil by distributing nano-sized diamonds (ND). The ND distributed on the coating surface broke the continuity of Sn-oxide layer, therefore leading to penetrate the molten solder through the oxide and retarding the wettability degradation during a reflow process. Furthermore, the ND in the Sn coating played a role of diffusion barrier for Sn atoms and decreased the growth rate of intermetallic compound ($Cu_6Sn_5$) layer during the solid-state aging. The study confirmed the importance of ND to improve the wettability and reliability of the Sn plating. Complete dispersion of the ND within the immersion Sn plating needs to be further developed for the electronic packaging applications.