• 제목/요약/키워드: nano-devices

검색결과 876건 처리시간 0.028초

Non-local orthotropic elastic shell model for vibration analysis of protein microtubules

  • Taj, Muhammad;Majeed, Afnan;Hussain, Muzamal;Naeem, Muhammad N.;Safeer, Muhammad;Ahmad, Manzoor;Khan, Hidayat Ullah;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • 제25권3호
    • /
    • pp.245-253
    • /
    • 2020
  • Vibrational analysis in microtubules is examined based on the nonlocal theory of elasticity. The complete analytical formulas for wave velocity are obtained and the results reveal that the small scale effects can reduce the frequency, especially for large longitudinal wave-vector and large circumferential wave number. It is seen that the small scale effects are more significant for smaller wave length. The methods and results may also support the design and application of nano devices such as micro sound generator etc. The effects of small scale parameters can increase vibrational frequencies of the protein microtubules and cannot be overlooked in the analysis of vibrating phenomena. The results for different modes with nonlocal effect are checked.

자기조립 단분자막을 이용한 MOSFET형 단백질 센서의 제작 및 특성 (Fabrication and Characteristics of MOSFET Protein Sensor Using Nano SAMs)

  • 한승우;박근용;김민석;김홍석;배영석;최시영
    • 센서학회지
    • /
    • 제13권2호
    • /
    • pp.90-95
    • /
    • 2004
  • Protein and gene detection have been growing importance in medical diagnostics. Field effect transistor (FET) - type biosensors have many advantages such as miniaturization, standardization, and mass-production. In this work, we have fabricated metal-oxide-semiconductor (MOS) FET that operates as molecular recognitions based electronic sensor. Measurements were taken with the devices under phosphate buffered saline solution. The drain current ($I_{D}$) was decreased after forming self-assembled mono-layers (SAMs) used to capture the protein, which resulted from the negative charges of SAMs, and increased after forming protein by 11.5% at $V_{G}$ = 0 V due to the positive charges of protein.

동종 접합 InGaAs 수직형 Fin TFET의 온도 의존 DC 특성에 대한 연구 (Temperature-dependent DC Characteristics of Homojunction InGaAs vertical Fin TFETs)

  • 백지민;김대현
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.275-278
    • /
    • 2020
  • In this study, we evaluated the temperature-dependent characteristics of homojunction InGaAs vertical Fin-shaped Tunnel Field-Effect Transistors (Fin TFETs), which were fabricated using a novel nano-fin patterning technique in which the Au electroplating and the high-temperature InGaAs dry-etching processes were combined. The fabricated homojunction InGaAs vertical Fin TFETs, with a fin width and gate length of 60 nm and 100 nm, respectively, exhibited excellent device characteristics, such as a minimum subthreshold swing of 80 mV/decade for drain voltage (VDS) = 0.3 V at 300 K. We also analyzed the temperature-dependent characteristics of the fabricated TFETs and confirmed that the on-state characteristics were insensitive to temperature variations. From 77 K to 300 K, the subthreshold swing at gate voltage (VGS) = threshold voltage (VT), and it was constant at 115 mV/decade, thereby indicating that the conduction mechanism through band-to-band tunneling influenced the on-state characteristics of the devices.

상용 유한요소해석 프로그램을 이용한 공압 스프링 내 다이아프램의 복소강성 산출 (Computation of Complex Stiffness of Inflated Diaphragm in Pneumatic Springs by Using FE Codes)

  • 이정훈;김광준
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.919-925
    • /
    • 2006
  • An accurate mathematical model for complex stiffness of the pneumatic spring would be necessary for an efficient design of a pneumatic spring used in vibration isolation tables for precision instruments such as optical devices or nano-scale equipments. A diaphragm, often employed for prevention of air leakage, plays a significant role of complex stiffness element as well as the pressurized air itself Therefore, effects of the diaphragm need to be included in the dynamic model for a more faithful description of dynamic behavior of pneumatic spring. But the complex stiffness of diaphragm is difficult to predict In an analytical way, since it is a rubber membrane of complicated shape in itself. Moreover, the diaphragm should be expandable in response to pressurization inside a chamber, which makes direct measurement of complex stiffness of diaphragm extremely difficult. In our earlier research, the complex stiffness of diaphragm was indirectly measured, which was just to eliminate the theoretical stiffness of pressurized air from the measured complex stiffness of the pneumatic spring. In order to reflect complex stiffness of inflated diaphragm on the total stiffness at the initial design or design improvement stage, however. it is required to be able to predict beforehand. In this paper, how to predict the complex stiffness of inflated rubber diaphragm by commercial FE codes (e.g. ABAQUS) will be discussed and the results will be compared with the indirectly measured values.

Spinal Cord Injury Treatment using a Noble Biocompatible Bridge

  • Hossain, S.M. Zakir;Babar, S.M. Enayetul;Azam, S.M. Golam;Sarma, Sailendra Nath;Haki, G.D.
    • Molecular & Cellular Toxicology
    • /
    • 제3권3호
    • /
    • pp.151-158
    • /
    • 2007
  • The failure of injured axons to regenerate in the mature central nervous system (CNS) has devastating consequences for victims of spinal cord injury (SCI). Traditional strategies to treat spinal cord injured people by using drug therapy and assisting devices that can not help them to recover fully various vital functions of the spinal cord. Many researches have been focused on accomplishing re-growth and reconnection of the severed axons in the injured region. Using cell transplantation to promote neural survival or growth has had modest success in allowing injured neurons to re-grow through the area of the lesion. Strategies for successful regeneration will require tissue engineering approach. In order to persuade sufficient axons to regenerate across the lesion to bring back substantial neurological function, it is necessary to construct an efficient biocompatible bridge (cell-free or implanted with different cell lines as hybrid implant) through the injured area over which axons can grow. Therefore, in this paper, spinal cord and its injury, different strategies to help regeneration of an injured spinal cord are reviewed. In addition, different aspects of designing a biocompatible bridge and its applications and challenges surrounding these issues are also addressed. This knowledge is very important for the development and optimalization of therapies to repair the injured spinal cord.

QCA를 이용한 자기조립된 Viologen 단분자막의 전기화학적 특성 (Electrochemical Properties of Self-Assembled Viologen Monolayers Using Quartz Crystal Analyzer)

  • 이동윤;박상현;신훈규;박재철;장정수;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 반도체 재료 센서 박막재료 전자세라믹스
    • /
    • pp.141-144
    • /
    • 2004
  • Molecular self-assembled of surfactant viologens are recently interesting because they can be from functional electrodes as well as micelle assemblies which can be profitably utilized for display devices, electrochemical studies and electrocatalysis as electron acceptor or electron mediator. The electrochemical behavior of self-assembled viologen monolayer on Au electrode surface has been investigated with QCM which has been known as nano-gram order mass detector. A monolayer of viologen is immobilized on the gold electrode surface and the normal potentials corresponding to the to the successive one-electron transfer processes of the viologen actives are two peaks in 0.1mol/l phosphate buffer solution respectively. These result suggest that the viologen SAMs are stable and well-behaved monolayers.

  • PDF

Displacement Properties of Nano Structure Dendrimer

  • Song Jin-Won;Lee Kyung-Sup;Lee Woo-Ki;Choi Young-Il;Yoon Suk-Am;Choi Chung-Seog
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권1호
    • /
    • pp.28-32
    • /
    • 2005
  • In the Langmuir-Blodgett (LB) technique, a monolayer on the water surface is transferred onto a substrate, which is raised and dipped through the surface. From this, multilayers can be obtained in which constituent molecules are periodically arranged. The LB technique has attracted considerable interest in the fabrication of electrical and electronic devices. Many researchers have investigated the electrical properties of monolayer and multiplayer films. Dendrimers represent a new class of synthetic macromolecules characterized by a regularly branched treelike structure. Multiple branching yields a large number of chain ends that distinguish dendrimers from conventional star-like polymers and microgels. The azobenzene dendrimer is one of the dendritic macromolecules that include the azo-group exhibiting a photochromic character. Due to the presence of the charge transfer element of the azo-group and its rod-shaped structure, these compounds are expected to have potential interest in electronics and ptoelectronics, especially in nonlinear optics. In the present paper, we give pressure stimulation to organic thin films and detect the induced displacement current.

뉴런 시냅스를 위한 멤리스터의 전기회로 모델의 실험적 연구 (Experimental Study on an Electrical Circuit Model for neuron synapse based Memristor)

  • 모영세;송한정
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.368-374
    • /
    • 2016
  • 본 논문에서 뉴런시냅스 응용을 위한 이산화 타이타늄 나노와이어 기반 멤리스터 소자의 전기회로 모델의 실험적 연구를 보인다. 제안하는 멤리스터 소자의 전기회로 모델은 IC 칩과 연산증폭기, 곱셈기 저항 및 커패시터 등의 수동소자 등으로 이루어진다. 멤리스터 소자의 등가모델의 시간파형, 주파수 특성, I-V 곡선 및 전력특성 등에 대한 PSPICE 모의실험 및 하드웨어 구현의 실험적 연구를 하였다. 측정결과, 히스테리시스 전류-전압 특성 등 실제 멤리스터 소자의 전기적 특성에 유사한 결과를 확인하였다.

Inductively coupled plasma etching of SnO2 as a new absorber material for EUVL binary mask

  • 이수진
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.124-124
    • /
    • 2010
  • Currently, extreme ultraviolet lithography (EUVL) is being investigated for next generation lithography. EUVL is one of competitive lithographic technologies for sub-22nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance due to the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore, new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF

Fabrication and Characterization of Electro-photonic Performance of Nanopatterned Organic Optoelectronics

  • 닐리쉬;한지영;권현근;이규태;고두현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.134.2-134.2
    • /
    • 2014
  • Photonic crystal solar cells have the potential for addressing the disparate length scales in polymer photovoltaic materials, thereby confronting the major challenge in solar cell technology: efficiency. One must achieve simultaneously an efficient absorption of photons with effective carrier extraction. Unfortunately the two processes have opposing requirements. Efficient absorption of light calls for thicker PV active layers whereas carrier transport always benefits from thinner ones, and this dichotomy is at the heart of an efficiency/cost conundrum that has kept solar energy expensive relative to fossil fuels. This dichotomy persists over the entire solar spectrum but increasingly so near a semiconductor's band edge where absorption is weak. We report a 2-D, photonic crystal morphology that enhances the efficiency of organic photovoltaic cells relative to conventional planar cells. The morphology is developed by patterning an organic photoactive bulk heterojunction blend of Poly(3-(2-methyl-2-hexylcarboxylate) thiophene-co-thiophene) and PCBM via PRINT, a nano-embossing method that lends itself to large area fabrication of nanostructures. The photonic crystal cell morphology increases photocurrents generally, and particularly through the excitation of resonant modes near the band edge of the organic PV material. The device performance of the photonic crystal cell showed a nearly doubled increase in efficiency relative to conventional planar cell designs. Photonic crystals can also enhance performance of other optoelectronic devices including organic laser.

  • PDF