• Title/Summary/Keyword: nano-composite

Search Result 1,055, Processing Time 0.032 seconds

A Study on the Design of Intelligent Classifier for Decision of Quality of Barrier Material (차단물질 특성 판정을 위한 지능형 분류기 설계에 관한 연구)

  • Kim, Sung-Ho;Yun, Seong-Ung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.230-235
    • /
    • 2008
  • Recently, LG chemical corporation developed new material called HYPERIER, which has an excellent barrier characteristic. It has many layers which are made of nano-composite within LDPE(Low-Density Poly Ethylene). In order to guarantee the quality of the final product from the production line, a certain test equipment is required to investigate the existence of layers inside the HYPERIER. In this work, ultrasonic sensor based test equipment for investigating the existence of inner layers is proposed. However, it is a tedious job for human operators to check the existence by just looking at the resounding waveform from ultrasonic sensor. Therefore, to enhance the performance of the ultrasonic test equipment, Fast Fourier Transform(FFT) and Principle Components Analysis(PCA) and Back-Propagation Neural Network(BPNN) are utilized which is used for classification of Quality. To verily the feasibility of the proposed scheme, some experiments are executed.

Fabrication of Hollow Micro-particles with Nonspherical Shapes by Surface Sol-gel Reaction (표면 솔-젤 반응을 활용한 마이크로미터 크기의 비구형상 공동 입자의 제조)

  • Cho, Young-Sang;Jeon, Seog-Jin;Yi, Gi-Ra
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.611-618
    • /
    • 2007
  • We demonstrate the sol-gel coating technique of colloidal clusters for producing hollow micro-particles with complex morphologies. Cross-linked amidine polystyrene (PS) microspheres were synthesized by emulsifier-free emulsion copolymerization of styrene and divinylbenzene. The amidine PS particles were self-organized inside toluene-in-water emulsion droplets to produce large quantities of colloidally stable clusters. These clusters were coated with thin silica shell by sol-gel reaction of tetraethylorthosilicate (TEOS) and ammonia, and the organic polystyrene cores were removed by calcination at high temperature to generate nonspherical hollow micro-particles with complex morphologies. This process can be used to prepare hollow particles with shapes such as doublets, tetrahedra, icosahedra, and others.

Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle

  • Tayeb, Tayeb Si;Zidour, Mohamed;Bensattalah, Tayeb;Heireche, Houari;Benahmed, Abdelillah;Bedia, E.A. Adda
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.135-148
    • /
    • 2020
  • The incorporation of carbon nanotubes in a polymer matrix makes it possible to obtain nanocomposite materials with exceptional properties. It's in this scientific background that this work was based. There are several theories that deal with the behavior of plates, in this research based on the Mindlin-Reissner theory that takes into account the transversal shear effect, for analysis of the critical buckling load of a reinforced polymer plate with parabolic distribution of carbon nanotubes. The equations of the model are derived and the critical loads of linear and parabolic distribution of carbon nanotubes are obtained. With different disposition of nanotubes of carbon in the polymer matrix, the effects of different parameters such as the volume fractions, the plate geometric ratios and the number of modes on the critical load buckling are analysed and discussed. The results show that the critical buckling load of parabolic distribution is larger than the linear distribution. This variation is attributed to the concentration of reinforcement (CNTs) at the top and bottom faces for the X-CNT type which make the plate more rigid against buckling.

Effects of Sintering Temperature on Fabrication Properties of LPS-SiC Ceramics (LPS-SiC 세라믹스 제조특성에 미치는 소결온도의 영향)

  • Park, Yi-Hyun;Jung, Hun-Chae;Kim, Dong-Hyun;Yoon, Han-Ki;Kohyam, Akira
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.204-209
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, $SiC_f/SiC$ composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of $SiC_f/SiC$ composites by hot pressing method. In the present work, Monolithic LPS-SiC was fabricated by hot pressing method in Ar atmosphere at 1760 $^{\circ}C$, 1780 $^{\circ}C$, 1800 $^{\circ}C$ and 1820 $^{\circ}C$ under 20 MPa using $Al_2O_3-Y_2O_3$ system as sintering additives in order to low sintering temperature. The starting powder was high purity ${\beta}-SiC$ nano-powder with an average particle size of 30 nm. Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the sintering temperature. In the micro-structure of this specimen, it was found that grain of sintered body was grown from 30 nm to 200 nm.

  • PDF

Effects of Reinforcing Fillers on Far-infrared Vulcanization Characteristics of EPDM (보강제에 따른 EPDM의 원적외선 가교 특성 연구)

  • Kim, J.S.;Lee, J.H.;Jung, W.S.;Bae, J.W.;Park, H.C.;Kang, D.P.
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.47-54
    • /
    • 2009
  • EPDM(Ethylene-propylene-diene-terpolymer) compound reinforced with carbon black having four different particle size, acetylene black(thermal conductivity carbon black), and silica were manufactured by internal mix and open mill. To investigate the effect of particle size of filler and filler type on far-infrared vulcanization, intermal temperature of compound, degree of curing, infrared spectroscopy, and thermal analysis were measured. The thermal conductivity of far-infrared vulcanized EPDM compound increased with increasing particle size of carbon filler, but hot air vulcanized EPDM compound is not affected by particle size. The thermal conductivity was increased in the order of carbon black < silica < acetylene black(thermal conductivity carbon black).

Facile in situ Formation of CuO/ZnO p-n Heterojunction for Improved H2S-sensing Applications

  • Shanmugasundaram, Arunkumar;Kim, Dong-Su;Hou, Tian Feng;Lee, Dong Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.156-161
    • /
    • 2020
  • In this study, hierarchical mesoporous CuO spheres, ZnO flowers, and heterojunction CuO/ZnO nanostructures were fabricated via a facile hydrothermal method. The as-prepared materials were characterized in detail using various analytical methods such as powder X-ray diffraction, micro Raman spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and transmission electron microscopy. The obtained results are consistent with each other. The H2S-sensing characteristics of the sensors fabricated based on the CuO spheres, ZnO flowers, and CuO/ZnO heterojunction were investigated at different temperatures and gas concentrations. The sensor based on ZnO flowers showed a maximum response of ~141 at 225 ℃. The sensor based on CuO spheres exhibited a maximum response of 218 at 175 ℃, whereas the sensor based on the CuO/ZnO nano-heterostructure composite showed a maximum response of 344 at 150 ℃. The detection limit (DL) of the sensor based on the CuO/ZnO heterojunction was ~120 ppb at 150 ℃. The CuO/ZnO sensor showed the maximum response to H2S compared with other interfering gases such as ethanol, methanol, and CO, indicating its high selectivity.

Microstructure and Mechanical Properties of Superhard Cr-Si-C-N Coatings Prepared by a Hybrid Coating System (하이브리드 코팅 시스템으로 제조된 초고경도 Cr-Si-C-N 나노복합 코팅막의 미세구조 및 기계적 특성)

  • Jang Chul Sik;Heo Su Jeong;Song Pung Keun;Kim Kwang Ho
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.3
    • /
    • pp.100-105
    • /
    • 2005
  • Cr-Si-C-N coatings were deposited on steel substrate (SKD 11) by a hybrid system of arc ion plating (AIP) and sputtering techniques. From XRD, XPS, and HRTEM analyses, it was found that Cr-Si-C-N had a fine composite microstructure comprising nano-sized crystallites of Cr(C, N) well distributed in the amorphous phase of $Si_3N_4/SiC$ mixture. Microhardness of Cr(C, N) coatings and Cr-Si-N coatings were reported about $\~22 GPa$ and $\~35 GPa$, respectively. As the Si was incorporated into Cr(C, N) coatings, The Cr-Si-C-N coatings having a Si content of $9.2 at.\%$ showed the maximum hardness value. As increased beyond Si content of $9.2 at.\%$, the interaction between nanocrystallites and amorphous phase was gone, the hardness was reduced as dependent on amorphous phase of $Si_3N_4/SiC$. In addition, the average coefficient of Cr-Si-C-N coatings largely decreased compared with Cr(C, N) coatings.

Effects of Strain-Induced Crystallization on Mechanical Properties of Elastomeric Composites Containing Carbon Nanotubes and Carbon Black (탄소나노튜브 및 카본블랙 강화 고무복합재료의 변형에 의한 결정화가 기계적 특성에 미치는 영향)

  • Sung, Jong-Hwan;Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.999-1005
    • /
    • 2011
  • The effects of strain-induced crystallization (SIC) on the mechanical properties of elastomeric composites as functions of extension ratio (${\lambda}$), multiwalled carbon nanotube (CNT) content, and carbon black (CB) content are investigated. The differential scanning calorimetry (DSC) analysis shows that the degree of crystallinity increases with the increase in the CB and CNT content. As ${\lambda}$ increases, the glass transition temperature (Tg) of the composites increases, and the latent heat of crystallization (LHc) of the composites is maximum at ${\lambda}$=1.5. It is found that the mechanical properties have a linear relation with LHc, depending on the CNT content. According to the TGA (thermogravimetric analysis), the weight loss of the composite matrix is 94.3% and the weight of the composites decreases with the filler content. The ratio of tensile modulus ($E_{comp}/E_{matrix}$) is higher than that of tensile strength (${\sigma}_{comp}/{\sigma}_{matrix}$) because of the CNT orientation inside the elastomeric composites.

A Study on Vulcanization of EPDM by Far-infrared (원적외선에 의한 EPDM의 가교 특성 연구)

  • Bae, J.W.;Kim, J.S.;Lee, J.H.;Jung, W.S.;Park, H.C.;Kang, D.P.
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Far-infrared vulcanization of ethylene-propylene-diene terpolymer(EPDM) compounds has been studied in comparison with hot air vulcanization. Vulcanization characteristics of EPDM compounds were measured by degree of curing and temperature of specimens in vulcanization process. As a result, degree of curing by far-infrared of EPDM compounds was shown to be higher value than that by hot air at the same vulcanization temperature. Especially, degree of curing by far-infrared on 3 mm thickness of EPDM compounds was increased by two times compared to that by hot air. While the increase of thermal conductivity of EPDM compounds highly improved degree of curing by far-infrared, that hardly improved degree of curing by hot air.

Development of Exchange-coupling Magnets Using Soft/hard Nanoparticles (나노 연/경자성 분말 재료를 이용한 Exchange-coupling 자석의 제조 기술)

  • Kim, Jong-Ryoul;Cho, Sang-Geun;Jeon, Kwang-Won
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.225-230
    • /
    • 2011
  • Magnetic materials has been applied to various fields due to their energy convertible properties between electrical and mechanical energy. Particularly, permanent magnets have been currently attracted much attention because they produce external magnetic field without any electrical current. For high efficiency, a demand for permanent magnets containing rare earth elements has been continuously increased, which abruptly raises the price and causes the supply difficulty of rare earth materials. Therefore, the development of permanent magnets with less or without rare earth elements become a urgent issue. In this report, the current trend and major issues on high efficiency permanent magnets, particularly exchange-coupling magnets, are discussed.