Abstract
Recently, LG chemical corporation developed new material called HYPERIER, which has an excellent barrier characteristic. It has many layers which are made of nano-composite within LDPE(Low-Density Poly Ethylene). In order to guarantee the quality of the final product from the production line, a certain test equipment is required to investigate the existence of layers inside the HYPERIER. In this work, ultrasonic sensor based test equipment for investigating the existence of inner layers is proposed. However, it is a tedious job for human operators to check the existence by just looking at the resounding waveform from ultrasonic sensor. Therefore, to enhance the performance of the ultrasonic test equipment, Fast Fourier Transform(FFT) and Principle Components Analysis(PCA) and Back-Propagation Neural Network(BPNN) are utilized which is used for classification of Quality. To verily the feasibility of the proposed scheme, some experiments are executed.
최근 LG화학은 '하이페리어(HYPERIER)'라 불리우는 고차단성의 고급 엔지니어링 플라스틱 신소재를 개발하였다. 이 소재는 LDPE(Low-Density Poly Ethylene)로 구성된 나노복합소재로 만들어졌으며, 여러 층으로 구성된다. 생산라인에서 산출된 최종 생산품의 품질을 보증하기 위해서는 하이페리어 내부에 존재하는 층들의 존재 유/무를 식별하기 위한 시험장비가 요구된다. 본 논문에서는 하이페리어 내부에 존재하는 층들의 유무를 조사하기 위해 사용될 수 있는 초음파 테스트 장치를 소개하고, 사람이 직접 계측된 신호를 검사하여 품질을 분류하는 기존의 시스템의 성능향상을 위해 FFT와 PCA, BP 신경망을 통하여 품질을 분류(양품/불량품)하는 기법을 제안하며, 시뮬레이션을 통하여 제안된 기법의 유용성을 확인해 보고자 한다.