DOI QR코드

DOI QR Code

Facile in situ Formation of CuO/ZnO p-n Heterojunction for Improved H2S-sensing Applications

  • Shanmugasundaram, Arunkumar (Graduate School of Mechanical Engineering, Chonnam National University) ;
  • Kim, Dong-Su (Graduate School of Mechanical Engineering, Chonnam National University) ;
  • Hou, Tian Feng (Graduate School of Mechanical Engineering, Chonnam National University) ;
  • Lee, Dong Weon (Graduate School of Mechanical Engineering, Chonnam National University)
  • Received : 2020.05.21
  • Accepted : 2020.05.31
  • Published : 2020.05.31

Abstract

In this study, hierarchical mesoporous CuO spheres, ZnO flowers, and heterojunction CuO/ZnO nanostructures were fabricated via a facile hydrothermal method. The as-prepared materials were characterized in detail using various analytical methods such as powder X-ray diffraction, micro Raman spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and transmission electron microscopy. The obtained results are consistent with each other. The H2S-sensing characteristics of the sensors fabricated based on the CuO spheres, ZnO flowers, and CuO/ZnO heterojunction were investigated at different temperatures and gas concentrations. The sensor based on ZnO flowers showed a maximum response of ~141 at 225 ℃. The sensor based on CuO spheres exhibited a maximum response of 218 at 175 ℃, whereas the sensor based on the CuO/ZnO nano-heterostructure composite showed a maximum response of 344 at 150 ℃. The detection limit (DL) of the sensor based on the CuO/ZnO heterojunction was ~120 ppb at 150 ℃. The CuO/ZnO sensor showed the maximum response to H2S compared with other interfering gases such as ethanol, methanol, and CO, indicating its high selectivity.

Keywords

References

  1. A. Shanmugasundaram, N. D. Chinh, Y.-J. Jeong, T. F. Hou, D.-S. Kim, D. Kim, Y. B. Kim, and D.-W. Lee, "Hierarchical nanohybrids of B- and N-codoped graphene/mesoporous NiO nanodisks: an exciting new material for selective sensing of H2S at near ambient temperature", J. Mater. Chem. A, Vol. 7, 9263-9278, 2019. https://doi.org/10.1039/C9TA00755E
  2. S. K. Ganapathi, M. Kaur, R. Singh, V. Singh, A. K. Debnath, K. P. Muthe, and S. C. Gadkari. "Anomalous Sensing Response of NiO Nanoparticulate Films towards $H_2S$", ACS App. Nano Mater., Vol. 2, No. 10, pp. 6726-6737, 2019. https://doi.org/10.1021/acsanm.9b01637
  3. D. Zhang, Z. Wu, and X. Zong, "Flexible and highly sensitive $H_2S$ gas sensor based on in-situ polymerized $SnO_2$/rGO/PANI ternary nanocomposite with application in halitosis diagnosis". Sens. Actuator B, Vol. 289, No. 15, pp. 32-41, 2019. https://doi.org/10.1016/j.snb.2019.03.055
  4. G. K. Naik, and Y. T. Yu, "Synthesis of Au@$TiO_2$ Coreshell Nanoparticle-decorated rGO Nanocomposite and its $NO_2$ Sensing Properties", J. Sens. Sci. Technol., Vol. 28 No. 4, pp. 225-230, 2019.
  5. S. Y. Yi, Y. G. Song, G. S. Kim, and C.-Y. Kang, "In-decorated NiO Nanoigloos Gas Sensor with Morphological Evolution for Ethanol Sensors", J. Sens. Sci. Technol., Vol. 28 No. 4, pp. 231-235, 2019.
  6. A. Shanmugasundaram, P. Basak, L. Satyanarayana, and S. V. Manorama, "Hierarchical SnO/$SnO_2$ nanocomposites: Formation of in situ p-n junctions and enhanced $H_2$ sensing", Sens. Actuators B, Vol. 185, No. pp. 265-273, 2013. https://doi.org/10.1016/j.snb.2013.04.097
  7. Z. Li,, N. Wang, Z. Lin, J. Wang, W. Liu, K. Sun, Y. Q. Fu, and Z. Wang, "Room-Temperature High-Performance $H_2S$ Sensor Based on Porous CuO Nanosheets Prepared by Hydrothermal Method", ACS App. Mater. Interfaces, Vol. 8 No. 32, pp. 20962-20968, 2016. https://doi.org/10.1021/acsami.6b02893
  8. S. Arunkumar, T. Hou, Y. B. Kim, B. Choi, S. H. Park, S. Jung and D. W. Lee, "Au Decorated ZnO Hierarchical Architectures: Facile Synthesis, Tunable Morphology and Enhanced CO Detection at Room Temperature", Sens. Actuators B, Vol. 243, pp. 990-1001, 2017. https://doi.org/10.1016/j.snb.2016.11.152
  9. A. Shanmugasundaram, B. Ramireddy, P. Basak, S. V. Manorama, and S. Srinath, "Hierarchical $In(OH)_3$ as a Precursor to Mesoporous $In_2O_3$ Nanocubes: A Facile Synthesis Route, Mechanism of Self-Assembly, and Enhanced Sensing Response toward Hydrogen", J. Phys. Chem. C, Vol. 118, No. 13. pp. 6909-6921, 2014. https://doi.org/10.1021/jp5010659
  10. A. Shanmugasundaram, V. Gundimeda, T. F. Hou, and D. W. Lee, "Realizing synergy between $In_2O_3$ nanocubes and nitrogen-doped reduced graphene Oxide: An excellent nanocomposite for the selective and sensitive detection of CO at ambient temperatures", ACS Appl. Mater. Interfaces, Vol. 9, No. 37, pp. 31728-31740, 2017. https://doi.org/10.1021/acsami.7b06253
  11. A. Shanmugasundaram, P. Basak, S. V. Manorama , B. Krishna, and S. Srinath,, "Hierarchical Mesoporous $In_2O_3$ with Enhanced CO Sensing and Photocatalytic Performance: Distinct Morphologies of $In(OH)_3$ via Self Assembly Coupled in Situ Solid-Solid Transformation", ACS App. Mater. Interfaces, Vol. 7, No. 14, pp. 7679-7689, 2015. https://doi.org/10.1021/acsami.5b00584
  12. S. Sonia, P. Sureshkumar, N. D. Jayram, Y. Masuda, D. Mangalaraj, and C. Lee, "Superhydrophobic and $H_2S$ gas sensing properties of CuO nanostructured thin films through a successive ionic layered adsorption reaction process", RSC Adv., Vol. 6, pp. 24290-24298, 2016. https://doi.org/10.1039/C6RA00209A
  13. P. Rai, J. W. Yoon, H. M. Jeong, S. J. Hwang, C. H. Kwak, and J. H. Lee, Design of Highly Sensitive and Selective Au@NiO Yolk-Shell Nanoreactors for Gas Sensor Applications, Nanoscale, Vol. 6, pp. 8292-8299, 2014. https://doi.org/10.1039/C4NR01906G
  14. G. J. Sun, H. Kheel, J. K. Lee, S. Choi, S. Lee, and C. Lee, "$H_2S$ gas sensing properties of $Fe_2O_3$ nanoparticle-decorated NiO nanoplate sensors", Surf. Coat. Technol., Vol. 307, pp. 1088-1095, 2016. https://doi.org/10.1016/j.surfcoat.2016.06.066
  15. A. Shanmugasundaram, R. Boppella, Y. J. Jeong, J. Park, Y. B. Kim, B. Choi, S. H. Park, S. Jung, and D. W. Lee, "Facile In-Situ Formation of RGO/ZnO Nanocomposite: Photocatalytic Remediation of Organic Pollutants under Solar Illumination", Mater. Chem. Phys., Vol. 218, pp. 218-228, 2018. https://doi.org/10.1016/j.matchemphys.2018.07.046
  16. Y. Zhai, Y. Ji, G. Wang, Y. Zhu, H. Liu, Z. Zhong, and F. Su, "Controllable wet synthesis of multicomponent copperbased catalysts for Rochow reaction", RSC Adv., Vol. 5, pp. 73011-73019, 2015. https://doi.org/10.1039/C5RA10999J
  17. S. Masudy-Panah, R.S. Moakhar, C. S. Chua, H. R. Tan, T. I. Wong, D. Chi, and G. K. Dalapati, "Nanocrystal Engineering of Sputter-Grown CuO Photocathode for Visible- Light-Driven Electrochemical Water Splitting", ACS Appl. Mater. Interfaces, Vol. 8, No. 2, pp. 1206-1213, 2016. https://doi.org/10.1021/acsami.5b09613
  18. Q. Li, Q. Wei, L. Xie, C. Chen, C. Lu, F. Y. Su, and P. Zhou, "Layered NiO/Reduced Graphene Oxide Composites by Heterogeneous Assembly with Enhanced Performance as High-Performance Asymmetric Supercapacitor Cathode", RSC Adv., Vol. 6, pp. 46548-46557, 2016. https://doi.org/10.1039/C6RA04998B
  19. Z. Song, Z. Wei, B. Wang, Z. Luo, S. Xu, W. Zhang, H. Yu, M. Li, Z. Huang, J. Zang, F. Yi, and H. Liu, "Sensitive Room-Temperature $H_2S$ Gas Sensors Employing SnO2 Quantum Wire/Reduced Graphene Oxide Nanocomposites", Chem. Mater., Vol. 28, pp. 1205-1212, 2016. https://doi.org/10.1021/acs.chemmater.5b04850
  20. C. V. G. Reddy, and S.V. Manorama, "Room Temperature Hydrogen Sensor Based on SnO2:La2O3", J. Electrochem. Soc., Vol. 147, pp. 390-393, 2000. https://doi.org/10.1149/1.1393206
  21. S. Arunkumar, P. Basak, L. Satyanarayana, and S. Manorama, "One-pot Hydrothermal Synthesis of SnO and $SnO_2$ Nanostructures: Enhanced H2 Sensing Attributed to in-situ p-n Junctions", 14th Int. Meet. on Chem. Sens., pp. 372-375, Nuremberg, Germany, 2012.
  22. R. Boppella, P. Manjula, S. Arunkumar, and S. V Manorama, "Advances in synthesis of nanostructured metal oxides for chemical sensors", Chem. Sens., Vol. 4, pp. 19(1)-19(20), 2014.