DOI QR코드

DOI QR Code

Development of Exchange-coupling Magnets Using Soft/hard Nanoparticles

나노 연/경자성 분말 재료를 이용한 Exchange-coupling 자석의 제조 기술

  • Kim, Jong-Ryoul (Department of Metallurgy and Materials Engineering, Hanyang University) ;
  • Cho, Sang-Geun (Department of Metallurgy and Materials Engineering, Hanyang University) ;
  • Jeon, Kwang-Won (Department of Metallurgy and Materials Engineering, Hanyang University)
  • Received : 2011.11.28
  • Accepted : 2011.12.20
  • Published : 2011.12.31

Abstract

Magnetic materials has been applied to various fields due to their energy convertible properties between electrical and mechanical energy. Particularly, permanent magnets have been currently attracted much attention because they produce external magnetic field without any electrical current. For high efficiency, a demand for permanent magnets containing rare earth elements has been continuously increased, which abruptly raises the price and causes the supply difficulty of rare earth materials. Therefore, the development of permanent magnets with less or without rare earth elements become a urgent issue. In this report, the current trend and major issues on high efficiency permanent magnets, particularly exchange-coupling magnets, are discussed.

자성 재료는 전기적 에너지와 기계적 에너지간 상호 전환 가능한 특성을 가지고 있기 때문에 발전 및 모터 분야 등에 널리 적용되고 있다. 그 중에서도 모터 분야의 효율성 향상을 위해서 외부의 자장 없이도 지속적으로 자성 특성을 나타내는 영구 자석은 그 활용도가 매우 높다. 특히, 영구 자석은 최대 자기적이 높은 희토류 자석이 개발된 후 이를 중심으로 개발 및 응용분야가 지속적으로 확대되었다. 그러나, 최근 모터의 용도가 확대되는 추이에 따라서 회토류 자석의 사용이 증대됨에 따라서 희토류 원자재 수급 문제에 봉착하여 이를 해결하기 위해 희토류 저감 및 대체 자석에 대한 연구 분야가 중요한 이슈가 되고 있다. 본 보고서에서는 현재 사용 되고 있는 영구 자석에 대해 설명하고 이를 대체할 수 있는 기술 중 가능성이 높은 방법으로써 exchange-coupling 현상을 이용한 영구 자석 개발 기술에 대해 기술하고자 한다.

Keywords

References

  1. O. Gutfleisch, M. A. Willard, E. Brck, C. H. Chen, S. G. Sankar, and J. P. Liu, Adv. Mater. 23, 821 (2011). https://doi.org/10.1002/adma.201002180
  2. E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991). https://doi.org/10.1109/20.102931
  3. R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993). https://doi.org/10.1103/PhysRevB.48.15812
  4. R. Coehoorn, D. B. de Mooji, J. P. W. B. Duchateau, and K. H. J. Buschow, J. de Physique C8, 669 (1988).
  5. A. Manaf, R. A. Buckley, and H. A. Davies, J. Magn. Magn. Mater. 128, 302 (1993). https://doi.org/10.1016/0304-8853(93)90475-H
  6. J. Ding, P. G. McCormick, and R. Street, J. Magn. Magn. Mater. 124, 1 (1993). https://doi.org/10.1016/0304-8853(93)90060-F
  7. E. E. Fullerton, J. S. Jiang, and S. D. Bader, J. Magn. Magn. Mater. 200, 392 (1999). https://doi.org/10.1016/S0304-8853(99)00376-5
  8. Y. Hou, S. Sun, C. Rong, and J. P. Liu, Appl. Phys. Lett. 91, 153117 (2007). https://doi.org/10.1063/1.2799170
  9. Y. Choi, J. S. Jiang, J. E. Pearson, S. D. Bader, J. J. Kavich, J. W. Freeland, and J. P. Liu, Appl. Phys. Lett. 91, 072509 (2007). https://doi.org/10.1063/1.2769755
  10. K. W. Moon, S. G. Cho, Y. H. Choa, K. H. Kim, and J. Kim, Phys. Status Solidi A 204, 4141 (2007). https://doi.org/10.1002/pssa.200777228
  11. D. Roy, C. Chivakumara, and P. S. Anil Kumar, J. Magn. Magn. Mater. 321, L11 (2009). https://doi.org/10.1016/j.jmmm.2008.09.017
  12. D. Roy and P. S. Anil Kumar, J. Appl. Phys. 106, 073902 (2009). https://doi.org/10.1063/1.3213341
  13. H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, Nature 420, 395 (2002). https://doi.org/10.1038/nature01208
  14. Y. Liu, L. Xu, D. Guo, W. Li, Q. Wang, and X. Zhang, J. Appl. Phys. 106, 113918 (2009). https://doi.org/10.1063/1.3268446
  15. W. Li, D. Guo, X. Li, Y. Chen, D. V. Gunderov, V. V. Stolyarov, and X. Zhang, J. Appl. Phys. 108, 053901 (2010). https://doi.org/10.1063/1.3480789
  16. S. Zhang, H. Xu, X. Tan, J. Ni, X. Hou, and Y. Dong, J. Alloy. Compd. 459, 41 (2008). https://doi.org/10.1016/j.jallcom.2007.04.299
  17. X. Y. Zhang, Y. Guan, and J. W. Zhang, Appl. Phys. Lett. 80, 1966 (2002). https://doi.org/10.1063/1.1456950
  18. L. Withanawasam, A. S. Murphy, and G. C. Hadjipanayis, J. Appl. Phys. 76, 7065 (1994). https://doi.org/10.1063/1.358028
  19. H. Sepehri-Amin, T. Ohkubo, T. Nishiuchi, S. Hirosawa, and K. Hono, Scripta Materialia 63, 1124 (2010). https://doi.org/10.1016/j.scriptamat.2010.08.021
  20. H. Sepehri-Amin, Y. Une, T. Ohkubo, K. Hono, and M. Sagawa, Scripta Materialia 65, 396 (2011). https://doi.org/10.1016/j.scriptamat.2011.05.006
  21. W. B. Cui, Y. K. Takahashi, and K. Hono, Acta Materialia 59, 7768 (2011). https://doi.org/10.1016/j.actamat.2011.09.006
  22. H. Sepehri-Amin, T. Ohkubo, T. Nishiuchi, S. Hirosawa, and K. Hono, Ultramicroscopy 111, 615 (2011). https://doi.org/10.1016/j.ultramic.2010.11.015
  23. H. Sepehri-Amin, T. Ohkubo, and K. Hono, J. Apply. Phys. 107, 09A745 (2010). https://doi.org/10.1063/1.3351247
  24. W. F. Li, H. Sepehri-Amin, T. Ohkubo, N. Hase, and K. Hono, Acta Materialia 59, 3061 (2011). https://doi.org/10.1016/j.actamat.2011.01.046
  25. S. Sugimoto, J. Phys. D: Appl. Phys. 44, 064001 (2011). https://doi.org/10.1088/0022-3727/44/6/064001
  26. K. W. Moon, K. W. Jeon, and J. Kim, IEEE Trans. Magn. 45, 4405 (2009). https://doi.org/10.1109/TMAG.2009.2024125
  27. S. G. Cho, K. W. Jeon, K. W. Moon, J. B. Kim, K. H. Kim, and J. Kim, J. Appl. Phys. 109, 07B533 (2011). https://doi.org/10.1063/1.3563062

Cited by

  1. Nanocomposite Ferrite vol.24, pp.3, 2014, https://doi.org/10.4283/JKMS.2014.24.3.081
  2. Magnetic Properties of Hard/Soft Nanocomposite Ferrite Synthesized by Self-Combustion Precursors vol.22, pp.3, 2015, https://doi.org/10.6117/kmeps.2015.22.3.045
  3. Manufacturing Technology for Tape Casting and Soft Magnetic Powder Using by Recycling Scrap of Fe-Si Electrical Sheet vol.23, pp.2, 2016, https://doi.org/10.6117/kmeps.2016.23.2.011