• Title/Summary/Keyword: nano-approach

Search Result 357, Processing Time 0.028 seconds

Anisotropic absorption of CdSe/ZnS quantum rods embedded in polymer film

  • Mukhina, Maria V.;Maslov, Vladimir G.;Baranov, Alexander V.;Artemyev, Mikhail V.;Fedorov, Anatoly V.
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.153-158
    • /
    • 2013
  • An approach to achieving of spatially homogeneous, ordered ensemble of semiconductor quantum rods in polymer film of polyvinyl butyral is reported. The CdSe/ZnS quantum rods are embedded to the polymer film. Obtained film is stretched up to four times to its initial length. A concentration of quantum rods in the samples is around $2{\times}10^{-5}$ M. The absorption spectra, obtained in the light with orthogonal polarization, confirm the occurrence of spatial ordering in a quantum rod ensemble. Anisotropy of the optical properties in the ordered quantum rod ensemble is examined. The presented method can be used as a low-cost solution for preparing the nanostructured materials with anisotropic properties and high concentration of nanocrystals.

Synthesis and Properties of Ultra-fine (Ti, M1, M2)(CN)-Ni Cermets

  • Kang, Young-Jae;Kang, Shin-Hoo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.644-645
    • /
    • 2006
  • TiC-and Ti(C,N)-based cermets are excellent in semi-and final finishing of work piece during cutting operations. Typical microstructure of the cermets is a core/rim structure. The undissolved Ti(C,N) cores contribute to their high hardness while the rim phases, (Ti,M1,M2)(C,N)-type solid solutions, play great roles in enhancing the toughness. In this paper, various ultrafine pre-mixed MeC-Ni powders were synthesized and the powders were sintered or hot pressed after mixing in order to control the size and volume fractions of core and rim phases in the system. This paper will present the factors determining the microstructure along with mechanical properties.

  • PDF

Synthesis and Characterization of Graphene Based Unsaturated Polyester Resin Composites

  • Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.53-58
    • /
    • 2013
  • Graphene-based polymer nanocomposites are very promising candidates for new high-performance materials that offer improved mechanical, barrier, thermal and electrical properties. Herein, an approach is presented to improve the mechanical, thermal and electrical properties of unsaturated polyester resin (UPR) by using graphene nano sheets (GNS). The extent of dispersion of GNS into the polymer matrix was also observed by using the scanning electron microscopy (SEM) which indicated homogeneous dispersion of GNS through the UPR matrix and strong interfacial adhesion between the GNS and UPR matrix were achieved in the UPR composite, which enhanced the mechanical properties. The tensile strength of the nanocomposites improved at a tune of 52% at a GNS concentration of 0.05%. Again the flexural strength also increased around 92% at a GNS concentration of 0.05%. Similarly the thermal properties and the electrical properties for the nanocomposites were also improved as evidenced from the differential scanning caloriemetry (DSC) and dielectric strength measurement.

Case Study of Priority-Setting of National Strategic Technologies in Korea (한국의 국가전략기술분야 우선순위 설정에 관한 사례 연구)

  • 변도영;손석호;이정근;고대승;정근하;박병무
    • Proceedings of the Technology Innovation Conference
    • /
    • 2002.02a
    • /
    • pp.183-203
    • /
    • 2002
  • The governments investment in R&D has rapidly increased so that a comprehensive and coherent approach to resource allocation has necessitated. Therefore the need for priorities in science and technology has been increased according to growing resources to science and technology. This study presents the methodology, process and results of priority-setting of national strategic technologies(IT, BT, NT, ST, ET, CT) through which 77 national key technologies are selected based on the criteria. Specifically it is intended to identify strategically necessary areas of focus for R&D, help leverage limited resources most effectively, and help coordinate government R&D activities by supplying ministries with a common set of priorities.

  • PDF

Direct Coloration using Self-assembly Fabrication Method on PET Fibers - Surface diazo coupling reaction -

  • Kim, Byung-Soon;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.19 no.5
    • /
    • pp.37-40
    • /
    • 2007
  • The electrostatic layer-by-layer technique provides a convenient way to control the construction of ultrathin films at nano-scale ranges and can be easily obtained. It can be also applicable to fiber substrate with dye compounds. We have fabricated multilayer dye films using diazonium resin and three couplers, which are prepared by self-assembly approach. This method is based on layer-by-layer deposition using electrostatic attraction between oppositely charged ions. Beside, the diazo coupling reaction proceeded to form azo dye layer on the PET fibers the same time. The corresponding results of the multilayer films have been discussed on the level of color strength (K/S).

On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading

  • Shariati, Ali;Ebrahimi, Farzad;Karimiasl, Mahsa;Vinyas, M.;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 2020
  • This paper investigates the vibration characteristics of flexoelectric nanobeams resting on viscoelastic foundation and subjected to magneto-electro-viscoelastic-hygro-thermal (MEVHT) loading. In this regard, the Nonlocal strain gradient elasticity theory (NSGET) is employed. The proposed formulation accommodates the nonlocal stress and strain gradient parameter along with the flexoelectric coefficient to accurately predict the frequencies. Further, with the aid of Hamilton's principle the governing differential equations are derived which are then solved through Galerkin-based approach. The variation of the natural frequency of MEVHT nanobeams under the influence of various parameters such as the nonlocal strain gradient parameter, different field loads, power-law exponent and slenderness ratio are also investigated.

The investigation of Magnetohydrodynamic nanofluid flow with Arrhenius energy activation

  • Sharif, Humaira;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Hussain, Muzamal;Mahmoud, S.R.;Al-Basyouni, K.S.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.437-448
    • /
    • 2021
  • In this article, an analytically and numerically 3D nanoliquid flow by a porous rotatable disk is presented in the presence of gyrotactic microorganisms. The mathematical model in the form of partial differential system is transmuted into dimensionless form by utilizing the appropriate transformation. The homotopy analysis approach is applied to attain the analytic solution of the problem. The effect of promising parameters on velocity distribution, temperature profile, nanoparticles volume fraction and motile microorganism distribution field are evaluated through graphs and in tabular form. The existence of Brownian motion and thermophoresis impacts are more proficient for heat transfer enhancement. Further the unique features like heat absorption/generation and energy activation are also examined for the present flow problem. The obtained results are compared with the earliear investigation to check the accuracy of present model.

Biomaterials-assisted spheroid engineering for regenerative therapy

  • Lee, Na-Hyun;Bayaraa, Oyunchimeg;Zechu, Zhou;Kim, Hye Sung
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.356-367
    • /
    • 2021
  • Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.

Rheological Modeling of Nanoparticles in a Suspension with Shear Flow (전단 흐름을 갖는 서스펜션 내부 나노 입자의 유변학적 특성 연구)

  • Kim, Gu;Fukai, Jun;Hironaka, Shuji
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.445-452
    • /
    • 2019
  • Shear thickening is an intriguing phenomenon in the fields of chemical engineering and rheology because it originates from complex situations with experimental and numerical measurements. This paper presents results from the numerical modeling of the particle-fluid dynamics of a two-dimensional mixture of colloidal particles immersed in a fluid. Our results reveal the characteristic particle behavior with an application of a shear force to the upper part of the fluid domain. By combining the lattice Boltzmann and discrete element methods with the calculation of the lubrication forces when particles approach or recede from each other, this study aims to reveal the behavior of the suspension, specifically shear thickening. The results show that the calculated suspension viscosity is in good agreement with the experimental results. Results describing the particle deviation, diffusivity, concentration, and contact numbers are also demonstrated.

Cure Characteristics of Ethoxysilyl Bisphenol A Type Epoxy Resin Systems for Next Generation Semiconductor Packaging Materials (새로운 반도체 Packaging용 Ethoxysilyl Bisphenol A Type Epoxy Resin System의 경화특성 연구)

  • Kim, Whan Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.19-26
    • /
    • 2017
  • The cure properties of ethoxysilyl bisphenol A type epoxy resin (Ethoxysilyl-DGEBA) systems with different hardeners were investigated, comparing with DGEBA and Diallyl-DGEBA epoxy resin systems. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The Ethoxysilyl-DGEBA epoxy resin system showed lower cure conversion rates than DGEBA and Diallyl-DGEBA epoxy resin systems. The conversion rates of these epoxy resin systems with DDM hardener are lower than those with HF-1M hardener. It can be considered that the optimum hardener for Ethoxysilyl-DGEBA epoxy resin system is Phenol Novolac type. These lower cure conversion rates in the Ethoxysilyl-DGEBA epoxy resin systems could be explained by the retardation of reaction molecule movements according to the formation of organic-inorganic hybrid network structure by epoxy and ethoxysilyl group in Ethoxysilyl- DGEBA epoxy resin system.

  • PDF