Browse > Article
http://dx.doi.org/10.14478/ace.2019.1040

Rheological Modeling of Nanoparticles in a Suspension with Shear Flow  

Kim, Gu (Department of Chemical Engineering, Faculty of Engineering, Kyushu University)
Fukai, Jun (Department of Chemical Engineering, Faculty of Engineering, Kyushu University)
Hironaka, Shuji (Department of Chemical Engineering, Faculty of Engineering, Kyushu University)
Publication Information
Applied Chemistry for Engineering / v.30, no.4, 2019 , pp. 445-452 More about this Journal
Abstract
Shear thickening is an intriguing phenomenon in the fields of chemical engineering and rheology because it originates from complex situations with experimental and numerical measurements. This paper presents results from the numerical modeling of the particle-fluid dynamics of a two-dimensional mixture of colloidal particles immersed in a fluid. Our results reveal the characteristic particle behavior with an application of a shear force to the upper part of the fluid domain. By combining the lattice Boltzmann and discrete element methods with the calculation of the lubrication forces when particles approach or recede from each other, this study aims to reveal the behavior of the suspension, specifically shear thickening. The results show that the calculated suspension viscosity is in good agreement with the experimental results. Results describing the particle deviation, diffusivity, concentration, and contact numbers are also demonstrated.
Keywords
Nano-particles; Thin film; Suspension; Shear thickening; Non-Newtonian fluid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. J. Maranzano and N. J. Wagner, The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions, J. Rheol., 45, 1205-1222 (2001).   DOI
2 I. R. Peters, S. Majumdar, and H. M. Jaeger, Direct observation of dynamic shear jamming in dense suspensions, Nature, 532, 214-217 (2016).   DOI
3 E. Brown and H. M. Jaeger, The role of dilation and confining stresses in shear thickening of dense suspensions, J. Rheol., 56(4), 875-923 (2012).   DOI
4 A. Sierou and J. F. Brady, Shear-induced self-diffusion in non-colloidal suspensions, J. Fluid Mech., 506, 285-314 (2004).   DOI
5 N. Tarantino, J. Y. Tinevez, E. F. Crowell, B. Boisson, R. Henriques, M. Mhlanga, F. Agou, A. Israël, and E. Laplantine, TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures, J. Cell Biol., 204(2), 231-245 (2014).   DOI
6 A. Einstein, Eine neue bestimmung der molekldimensionen, Ann. Phys. (Berl.), 324(2), 289-306 (1906).   DOI
7 E. Nazockdast and J. F. Morris, Microstructural theory and the rheology of concentrated colloidal suspensions, J. Fluid Mech., 713, 420-452 (2012).   DOI
8 N. J. Wagner and J. F. Brady, Shear thickening in colloidal dispersions, Phys. Today, 62, 27-32 (2009).
9 J. Bergenholtz, J. F. Brady, and M. Vicic, The non-Newtonian rheology of dilute colloidal suspensions, J. Fluid Mech., 456, 239-275 (2002).   DOI
10 N. J. Wagner and J. F. Brady, Shear thickening in colloidal dispersions, Phys. Today, 62(10), 27-32 (2009).   DOI
11 M. Schmitt, M. Baunach, L. Wengeler, K. Peters, P. Junges, P. Scharfer, and W. Schabel, Slot-die processing of lithium-ion battery electrodes-coating window characterization, Chem. Eng. Process., 68, 32-37 (2013).   DOI
12 H. A. Barnes, Shear-thickening ("Dilatancy") in suspensions of non aggregating solid particles dispersed in newtonian liquids, J. Rheol., 33, 329-366 (1989).   DOI
13 S. Khandavalli and J. Rothstein, Extensional rheology of shear-thickening nanoparticle dispersions in an aqueous polyethylene oxide solutions, J. Rheol., 58(2), 411-431 (2014).   DOI
14 H. Liu, Q. Kang, C. R. Leonardi, S. Schmieschek, A. Narvaez, B. D. Jones, J. R. Williams, A. J. Valocchi, and J. Harting, Multiphase lattice Boltzmann simulations for porous media applications, Comput. Geosci., 20(4), 777-805 (2016).   DOI
15 S. Khandavalli, J. A. Lee, M. Pasquali, and J. P. Rothstein, The effect of shear-thickening on liquid transfer from an idealized gravure cell, J. Nonnewton. Fluid Mech., 221, 55-65 (2015).   DOI
16 K. T. Kim and R. E. Khayat, Transient coating flow of a thin non-Newtonian fluid film, Phys. Fluids, 14, 2202-2215 (2002).   DOI
17 T. Tsuda, Coating flows of power-law non-newtonian fluid in slot coating, J. Soc. Rheol. Jpn., 38(4-5), 223-230 (2010).   DOI
18 K. M. Beazley, Industrial aqueous suspensions, in: K. Walters (ed.), Rheometry: Industrial Applications, 339-413, Research Studies Press, Chichester UK (1980).
19 H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Granular solids, liquids, and gases, Rev. Mod. Phys., 68(4), 1259-1273 (1996).   DOI
20 R. G. Egres, F. Nettesheim, and N. J. Wagner, Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition, J. Rheol., 50(5), 685-709 (2006).   DOI
21 W. Huang, Y. Wu, L. Qiu, C. Dong, J. Ding, and D. Li, Tuning rheological performance of silica concentrated shear thickening fluid by using graphene oxide, Adv. Condens. Matter Phys., 2015, 734250 (2015).
22 N. J. Wagner, E. D. Wetzel, G. Ronald, and J. R. Egres, Shear thickening fluid containment in polymer composites, US Patent 0234572 (2006).
23 X. Bian, S. Litvinov, M. Ellero, and N. J. Wagner, Hydrodynamic shear thickening of particulate suspension under confinement, J. Nonnewton. Fluid Mech., 213, 39-49 (2014).   DOI
24 R. L. Hoffman, Explanations for the cause of shear thickening in concentrated colloidal suspensions, J. Rheol., 42, 111-123 (1998).   DOI
25 R. L. Hoffman, Discontinuous and dilatant viscosity behavior in concentrated suspensions: III. Necessary conditions for their occurrence in viscometric flows, Adv. Colloid Interface Sci., 17(1), 161-184 (1982).   DOI
26 M. Yang and E. S. G. Shaqfeh, Mechanism of shear thickening in suspensions of rigid spheres in Boger fluids. Part II: Suspensions at finite concentration, J. Nonnewton. Fluid Mech., 234, 51-68 (2016).   DOI
27 Y. Chen, Q. Cai, Z. Xia, M. Wang, and S. Chen, Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions, Phys. Rev. E, 88(1), 013303-1-15 (2013).   DOI
28 M. C. Sukop and D. T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, 31-35, Springer (2007).
29 G. V. Krivovichev, Linear Bhatnagar-Gross-Krook equations for simulation of linear diffusion equation by lattice Boltzmann method, Appl. Math. Comput., 325, 102-119 (2018).   DOI
30 L. S. Lin, H. W. Chang, and C. A. Lin, Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU, Comput. Fluids, 80(10), 381-387 (2013).   DOI
31 H. P. Zhu and A. B. Yu, A theoretical analysis of the force models in discrete element method, Powder Technol., 161(2), 122-129 (2006).   DOI
32 P. A. Cundall and O. D. L. Strack, A discrete numerical model for granular assemblies, Geotechnique, 29(1), 47-65 (1979).   DOI
33 M. Kuanmin, Y. W. Michael, X. Zhiwei, and C. Tianning, DEM simulation of particle damping, Powder Technol., 142(2), 154-165 (2004).   DOI
34 W. Smith, D. Melanz, C. Senatore, K. Iagnemma, and H. Peng, Comparison of discrete element method and traditional modeling methods for steady-state wheel-terrain interaction of small vehicles, J. Terramechanic, 56, 61-75 (2014).   DOI
35 S. Laryea, M. S. Baghsorkhi, J. F. Ferellec, G. R. McDowell, and C. Chen, Comparison of performance of concrete and steel sleepers using experimental and discrete element methods, Transp. Geotech., 1(4), 225-240 (2014).   DOI
36 P. P. Prochazka, Application of discrete element methods to fracture mechanics of rock bursts, Eng. Fract. Mech., 71(4), 601-618 (2004).   DOI
37 I. Klaus, T. Nils, and R. Ulrich, Simulation of moving particles in 3D with the Lattice Boltzmann method, Comput. Math. Appl., 55, 1461-1468 (2008).   DOI
38 K. Chen, Y. Wang, S. Xuan, and X. Gong, A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid, J. Colloid Interface Sci., 497(1), 378-384 (2017).   DOI
39 O. Filippova and D. Hanel, Grid refinement for lattice-BGK models, J. Comput. Phys., 147, 219-228 (1998).   DOI
40 R. Mei, L. S. Luo, and W. Shyy, An accurate curved boundary treatment in the lattice Boltzmann method, J. Comput. Phys., 155, 307-330 (1999).   DOI
41 L. Verlet, Computer "Experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159(1), 98-103 (1967).   DOI
42 C. Chang, C. H. Liu, and C. A. Li, Boundary conditions for lattice Boltzmann simulations with complex geometry flows, Comput. Math. Appl., 58(5), 940-949 (2002).
43 M. Bouzidi, M. Firdaouss, and P. Lallemand, Momentum transfer of a boltzmann-lattice fluid with boundaries, Phys. Fluids, 13, 3452-3459 (2001).   DOI
44 D. R. J. Owen, C. R. Leonardi, and Y. T. Feng, An efficient framework for fluid-structure interaction using the lattice Boltzmann method and immersed moving boundaries, Int. J. Numer. Methods Eng., 87(1), 66-95 (2011).   DOI
45 O. I. Vinogradova, Drainage of a thin liquid-film confined between hydrophobic surfaces, Langmuir, 11, 2213-2220 (1995).   DOI
46 H. Grubmuller, H. Heller, A. Windemuth, and K. Schulten, Generalized verlet algorithm for efficient molecular dynamics simulations with long-range interactions, Mol. Simul., 6, 121-142 (1991).   DOI
47 E. P. Honig, G. J. Roeberse, and P. H. Wiersema, Effect of hydrodynamic interaction on coagulation rate of hydrophobic colloids, J. Colloid Interface Sci., 36, 36-97 (1971).
48 S. L. Dance and M. R. Maxey, Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow, J. Comput. Phys., 189, 212-238 (2003).   DOI
49 C. G. de Kruif, E. M. F. van Iersel, A. Vrij, and W. B. Russel, Hardsphere colloidal dispersions - Viscosity as a function of shear rate and volume fraction, J. Chem. Phys., 83, 4717-4725 (1985).   DOI
50 T. Zhang, B. Shi, Z. Guo, Z. Chai, and J. Lu, General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method, Phys. Rev., 85, 016701-1-14 (2012).
51 Y. Zong, C. Peng, Z. Guoc, and L. P. Wang, Designing correct fluid hydrodynamics on a rectangular grid using MRT lattice Boltzmann approach, Comput. Math. Appl., 72, 288-310 (2016).   DOI