• 제목/요약/키워드: nano structure

검색결과 1,957건 처리시간 0.027초

AAO를 이용한 나노 패턴 마스터 제작에 관한 연구 (Study on Fabrication of Highly Ordered Nano Patterned Master by Using Anodic Aluminum Oxidation)

  • 신홍규;권종태;서영호;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.368-370
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. The resulting good filled uniform nano molded structure through hot embossing molding process shows the validity of the fabricated nano pattern masters.

  • PDF

나노 인장시험을 위한 압축 시험기용 인장시편 제작에 관한 연구 (Fabrication of Nano-Size Specimens for Tensile Test Employing Nano-Indentation Device)

  • 임태우;양동열
    • 한국정밀공학회지
    • /
    • 제32권10호
    • /
    • pp.911-916
    • /
    • 2015
  • In the nano/micro scale, material properties are dependent on the size-scale of a structure. However, conventional micro-scale tensile tests have limitations to obtain reliable values of nano-scale material properties owing to residual stress and elastic slippage in the gripping/aligning process. The indenter-driven nano-scale tensile test provides prominent advantages simple testing device, high-quality nano-scale metallic specimen with negligible residual stress. In this paper, two-types of specimens (a specimen with multi-testing parts and a specimen with a single-testing part) are discussed. Focused ion beam (FIB) is employed to fabricate a nano-scale specimen from a thin nickel film. Using the specimen with a single-testing part, we obtained a nano-scale stress-strain curve of electroplated nickel film.

PMMA 나노 기둥의 압축시험에 대한 분자동역학 해석 (Molecular Dynamics Simulation for Compression Test of PMMA Nano Pillars)

  • 김정엽;김재현;최병익
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.502-505
    • /
    • 2007
  • PMMA has been extensively adopted in Nano Imprint Lithography(NIL). PMMA nano-structures experience severe mechanical load and deformation during NIL process, and understanding its mechanical behavior is very important in designing and optimizing NIL process. One of the most promising techniques for characterizing the mechanical behavior of nano structures is nano pillar compression test. In this study, the mechanical behaviors of PMMA pillars during compression test are analyzed using Molecular Dynamics. Two methods for simulation of PMMA nano pillars are proposed. The stress-strain relationship of nano-scale PMMA structure is obtained based on CVFF(Covalent Valence Force Fields) potential and the dependency of the applied strain rate on the stress-strain relationship is analyzed. The obtained stress-strain relationships can be useful in simulating nano-scale PMMA structures using Finite Element Method(FEM) and understanding the experimental results obtained by compression test of PMMA nano pillars.

  • PDF

탄소나노튜브 스마트 복합소재의 전기적 임피던스 변화를 이용한 나노센서의 센싱 특성 연구 (A Study on Sensing Characteristics of Carbon Nanotube Smart Composite Nano Sensors Based on Electrical Impedance Measurement)

  • 강인필
    • 동력기계공학회지
    • /
    • 제13권1호
    • /
    • pp.65-71
    • /
    • 2009
  • To address the need for new intelligent sensing, this paper introduces nano sensors made of carbon nanotube (CNT) composites and presents their preliminary experiments. Having smart material properties such as piezoresistivity, chemical and bio selectivity, the nano composite can be used as smart electrodes of the nano sensors. The nano composite sensor can detect structural deterioration, chemical contamination and bio signal by means of its impedance measurement (resistance and capacitance). For a structural application, the change of impedance shows specific patterns depending on the structural deterioration and this characteristic is available for an in-situ multi-functional sensor, which can simultaneously detect multi symptoms of the structure. This study is anticipated to develop a new nano sensor detecting multiple symptoms in structural, chemical and bio applications with simple electric circuits.

  • PDF

나노 인텐테이션을 이용한 산화알루미늄(AAO, Anodic Aluminum Oxide)구조물의 물성치에 대한 연구 (The study on properties of AAO(Anodic Aluminum Oxide) structures using nano indentation)

  • 고성현;이대웅;지상은;박현철;이건홍;황운봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.144-149
    • /
    • 2004
  • Porous anodic alumina has been used widely for corrosion protection of aluminum surfaces or as dielectric material in micro-electronics applications. It exhibits a homogeneous morphology of parallel pores which can easily be controlled between 10 and 400nm. It has been applied as a template for fabrication of the nanometerscale composite. In this study, mechanical properties of the AAO structures are measured by the nano indentation method. Nano indentation technique is one of the most effective method to measure the mechanical properties of nano-structures. Basically, hardness and elastic modulus can be obtained by the nano-indentation. Using the nano-indentation method, we investigated the mechanical properties of the AAO structure with different size of nano-holes. In results, we find the hole effect that changes the mechanical properties as size of nano hole.

  • PDF

Synthesis and Electrochemical Characterization of Reduced Graphene Oxide-Manganese Oxide Nanocomposites

  • Lee, Yu-Ri;Song, Min-Sun;Lee, Kyung-Min;Kim, In-Young;Hwang, Seong-Ju
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Nanocomposites of reduced graphene oxide and manganese (II,III) oxide can be synthesized by the freeze-drying process of the mixed colloidal suspension of graphene oxide and manganese oxide, and the subsequent heat-treatment. The calcined reduced graphene oxide-manganese (II,III) oxide nanocomposites are X-ray amorphous, suggesting the formation of homogeneous and disordered mixture without any phase separation. The reduction of graphene oxide to reduced graphene oxide upon the heat-treatment is evidenced by Fourier-transformed infrared spectroscopy. Field emission-scanning electronic microscopy and energy dispersive spectrometry clearly demonstrate the formation of porous structure by the house-of-cards type stacking of reduced graphene oxide nanosheets and the homogeneous distribution of manganese ions in the nanocomposites. According to Mn K-edge X-ray absorption spectroscopy, manganese ions in the calcined nanocomposites are stabilized in octahedral symmetry with mixed Mn oxidation state of Mn(II)/Mn(III). The present reduced graphene oxide-manganese oxide nanocomposites show characteristic pseudocapacitance behavior superior to the pristine manganese oxide, suggesting their applicability as electrode material for supercapacitors.

Preparation, Characterizations and Conductivity of Composite Polymer Electrolytes Based on PEO-LiClO4 and Nano ZnO Filler

  • ElBellihi, Abdelhameed Ahmed;Bayoumy, Wafaa Abdallah;Masoud, Emad Mohamed;Mousa, Mahmoud Ahmed
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2949-2954
    • /
    • 2012
  • Nano ZnO with an average size of 8 nm was prepared by thermal decomposition of zinc oxalate at $450^{\circ}C$. A series of based composite polymer electrolyte PEO-$LiClO_4$ and nano ZnO as a filler have been synthesized using solution cast technique, with varying the filler ratio systematically. XRD, DSC and FTIR studies have been conducted to investigate the structure and interaction of different groups in the composite polymer electrolyte. Effect of nano ZnO ceramic filler concentration on the structure of composites and their electrical properties (DC-conductivity, AC-conductivity, dielectric constant, dielectric loss and impedance) at different frequencies and temperatures was studied. Melting temperature ($T_m$) of PEO decreased with the addition of both $LiClO_4$ salt and nano ZnO filler due to increasing the amorphous state of polymer. All composite samples showed an ionic conductivity. The maximum room temperature ionic conductivity is found for $(ZnO)_{0.5}(PEO)_{12}(LiClO_4)$ composite sample. All the results are correlated and discussed.

나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가 (Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties)

  • 박수진;신헌철
    • 한국재료학회지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.

Electrical properties of the Porous polycrystalline silicon Nano-Structure as a cold cathode field emitter

  • Lee, Joo-Won;Kim, Hoon;Lee, Yun-Hi;Jang, Jin;Oh, Myung-Hwan;Ju, Byung-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.1035-1038
    • /
    • 2002
  • The electrical properties of Porous polycrystalline silicon Nano-Structure (PNS) as a cold cathode were investigated as a function of anodizing condition, the thickness of Au film as a top electrode and the substrate temperature. Non-doped 2${\mu}m$-polycrystalline silicon was electrochemically anodized in HF: ethanol (=1:1) mixture as a function of the anodizing condition including a current density and anodizing time. After anodizing, the PNS was thermally oxidized for 1 hr at 900 $^{\circ}C$. Then, 20nm, 30nm, 45nm thickness of Au films as a top electrode were deposited by E-beam evaporator. Among the PNSs fabricated under the various kinds of anodizing conditions, the PNS anodized at a current density of 10mA/$cm^2$ for 20 sec has the lowest turn-on voltage and the highest emission current than those of others. Also, the electron emission properties were investigated as functions of measuring temperature and the different thickness of Au film as a top-electrode.

  • PDF

Electrical Characteristics of Ge-Nanocrystals-Embeded MOS Structure

  • Choi, Sam-Jong;Park, Byoung-Jun;Kim, Hyun-Suk;Cho, Kyoung-Ah;Kim, Sang-Sig
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.3-4
    • /
    • 2005
  • Germanium nanocrystals(NCs) were formed in the silicon dioxide($SiO_2$) on Si layers by Ge implantation and rapid thermal annealing process. The density and mean size of Ge-NCs heated at $800^{\circ}C$ during 10 min were confirmed by High Resolution Transmission Electron Microscopy. Capacitance versus voltage(C-V) measurements of MOS capacitors with single $Al_2O_3$ capping layers were performed in order to study electrical properties. The C-V results exhibit large threshold voltage shift originated by charging effect in Ge-NCs, revealing the possibility that the structure is applicable to Nano Floating Gate Memory(NFGM) devices.

  • PDF