DOI QR코드

DOI QR Code

Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties

나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가

  • Park, Su-Jin (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
  • Received : 2011.10.18
  • Accepted : 2011.11.16
  • Published : 2012.01.27

Abstract

Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.

Keywords

References

  1. T. P. Hoar and N. F. Mott, J. Phys. Chem. Solid., 9, 97 (1959). https://doi.org/10.1016/0022-3697(59)90199-4
  2. F. Li, L. Zhang and R. M. Metzger, Chem. Mater., 10, 2470 (1998). https://doi.org/10.1021/cm980163a
  3. K. Nielsch, J. Choi, K. Schwirm, R. B. Wehrspohn and U. Gosele, Nano Letters, 2, 677 (2002). https://doi.org/10.1021/nl025537k
  4. A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld and K. S. Goto, J. Electrochem. Soc., 139, 3690 (1992). https://doi.org/10.1149/1.2069145
  5. H. Tsuchiya and D. Schmuki, Electrochem. Comm., 7, 49 (2005). https://doi.org/10.1016/j.elecom.2004.11.004
  6. I. Sieber, H. Hildebrand, A. Friedrich and P. Schmuki, Electrochem. Comm., 7, 97 (2005). https://doi.org/10.1016/j.elecom.2004.11.012
  7. T. Watanabe, T. Hirose, K. Arai and M. Chikazawa, J. Jpn. Inst. Metals, 63, 496 (1999).
  8. N. Tamura, M. Fujimoto, M. Kamino and S. Fujitani, Electrochim. Acta, 49, 1949 (2004). https://doi.org/10.1016/j.electacta.2003.12.024
  9. S. D. Beattie and J. R. Dahn, J. Electrochem. Soc., 150, A894 (2003). https://doi.org/10.1149/1.1577336
  10. O. Mao and J. R. Dahn, J. Electrochem. Soc., 146, 414 (1999). https://doi.org/10.1149/1.1391623
  11. I. Sandu, T. Brousse, D. M. Schleich and M. Danot, J. Solid State Chem., 177, 4332 (2004). https://doi.org/10.1016/j.jssc.2004.06.032
  12. A. Sivashanmugam, T. P. Kumar, N. G. Renganathan, S. Gopukumar, M. Wohlfahrt-Mehrens and J. Garche, J. Power Sourc., 144, 197 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.047
  13. J. P. Maranchi, A. F. Hepp and P. N. Kumta, Mater. Sci. Eng. B, 116, 327 (2005). https://doi.org/10.1016/j.mseb.2004.05.041
  14. L. Yuan, Z. P. Guo, K. Konstantinov, H. K. Liu and S. X. Dou, J. Power Sourc., 159, 345 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.048
  15. H. J. Wang, J. M. Wang, W. B. Fang, H. Wan, L. Liu, H. Q. Lian, H. B. Shao, W. X. Chen, J. Q. Zhang and C. N. Cao, Electrochem. Comm., 12, 194 (2010). https://doi.org/10.1016/j.elecom.2009.11.022
  16. M. Xu, M. Zhao, F. Wang, W. Guan, S. Yang and X. Song, Mater. Lett., 64, 921 (2010). https://doi.org/10.1016/j.matlet.2010.01.059
  17. R. Yang, Y. Gu, Y. Li, J. Zheng and X. Li, Acta Mater., 58, 866 (2010). https://doi.org/10.1016/j.actamat.2009.10.001
  18. J. W. Lee, S. J. Park and H. C. Shin, Kor. J. Mater. Res., 21, 21 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.1.021
  19. H. C. Shin, J. Dong and M. Liu, Adv. Mater., 16, 237 (2004). https://doi.org/10.1002/adma.200305660
  20. J. W. Lee, S. J. Park. W. S. Choi, H. C. Shin, Electrochim. Acta, 56, 5919 (2011). https://doi.org/10.1016/j.electacta.2011.03.144
  21. X. Zhu, L. Liu, Y. Song, H. Jia, H. Yu, X. Xiao and X. Yang, Mater. Lett., 62, 4038 (2008). https://doi.org/10.1016/j.matlet.2008.05.062
  22. J. H. Jeun, H. S. Ryu, S. H. Hong, J. Electrochem. Soc. 156(9), J263 (2009). https://doi.org/10.1149/1.3166145

Cited by

  1. ) films and their application as electrode materials in lithium-ion batteries vol.4, pp.2, 2016, https://doi.org/10.1039/C5TA06546A