Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.9.2949

Preparation, Characterizations and Conductivity of Composite Polymer Electrolytes Based on PEO-LiClO4 and Nano ZnO Filler  

ElBellihi, Abdelhameed Ahmed (Department of Chemistry, Faculty of Science, Benha University)
Bayoumy, Wafaa Abdallah (Department of Chemistry, Faculty of Science, Benha University)
Masoud, Emad Mohamed (Department of Chemistry, Faculty of Science, Benha University)
Mousa, Mahmoud Ahmed (Department of Chemistry, Faculty of Science, Benha University)
Publication Information
Abstract
Nano ZnO with an average size of 8 nm was prepared by thermal decomposition of zinc oxalate at $450^{\circ}C$. A series of based composite polymer electrolyte PEO-$LiClO_4$ and nano ZnO as a filler have been synthesized using solution cast technique, with varying the filler ratio systematically. XRD, DSC and FTIR studies have been conducted to investigate the structure and interaction of different groups in the composite polymer electrolyte. Effect of nano ZnO ceramic filler concentration on the structure of composites and their electrical properties (DC-conductivity, AC-conductivity, dielectric constant, dielectric loss and impedance) at different frequencies and temperatures was studied. Melting temperature ($T_m$) of PEO decreased with the addition of both $LiClO_4$ salt and nano ZnO filler due to increasing the amorphous state of polymer. All composite samples showed an ionic conductivity. The maximum room temperature ionic conductivity is found for $(ZnO)_{0.5}(PEO)_{12}(LiClO_4)$ composite sample. All the results are correlated and discussed.
Keywords
PEO-based polymer electrolyte; Ionic conductivity; Nano composites;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Cowie, J. M. G.; Spence, G. H. Solid State Ionics 1998, 109, 139.
2 Awadhia, A.; Patel, S. K.; Agrawal, S. L. Prog. in Crystal Growth and Character. of Mater. 2006, 52, 61.   DOI
3 Finch, C. A. Polyvinyl Alcohol: Properties and Applications; John Wiley; Sons Ltd., London, 1973.
4 Singh, K. P.; Gupta, P. N.; Singh, R. P. J. Polym. Mater. 1992, 9, 131.
5 Liu, J.; Huang, X.; Duan, J.; Ai, H.; Tu, P. Mat. Lett. 2005, 59, 3710.   DOI
6 Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures; Wiley: New York, 1970.
7 Wunderlich, B. Macromolecular Physics; Academic Press: New York, 1980, 3, 67.
8 Papke, B. L.; Ratner, M. A.; Shriver, D. F. J. Electrochem. Soc. 1982, 129, 1434.   DOI   ScienceOn
9 Wen, S. J.; Richrdson, T. J.; Ghantous, D. I.; Striebel, K. A.; Ross, P. N.; Cairns, E. J. J. Electroanal. Chem. 1996, 408, 113.   DOI
10 Fan, L.; Dang, Z.; Wei, G.; Wen, N. C.; Li, M. Mater. Sci. and Eng. B 2003, 99, 340.   DOI   ScienceOn
11 Maier, J. Solid State Ionics 1994, 70-71, 43.   DOI
12 Maier, J. Prog. Solid State Chem. 1995, 23, 171.   DOI
13 Wieczorek, W.; Raducha, D.; Zalewska, A. J. Phys. Chem. B 1998, 102, 8725.   DOI
14 Sharma, J. P.; Sekhon, S. S. Solid State Ionics 2007, 178, 439.   DOI
15 Hashmi, S. A.; Upadhayaya, H. M.; Thakur, A. K. Solid State Ionics: Materials and Devices; Chodari, B. V. R., Wang, W., Eds.; World Scientific: Singapore, 2000; p 461.
16 Pandey, G. P.; Hashmi, S. A.; Agrawal, R. C. Solid State Ionics 2008, 179, 543.   DOI
17 Kumar, B. J. Power Sources 2004, 135, 215.   DOI
18 Kumar, B.; Nellutla, S.; Thokchom, J. S.; Chen, C. J. Power Sources 2006, 160, 1329.   DOI
19 Tsunemi, K.; Ohno, H.; Tsuchida, E. Electrochem. Acta 1983, 28(6), 833.   DOI
20 Baskaran, R.; Selvasekarapandian, S.; Kuwata, N.; Kawamura, J.; Hattori, T. J. Phys. and Chem. of Sol. 2007, 68, 407.   DOI
21 Quartarone, E.; Mustarelli, P.; Magistris, A. Solid State Ionics 1998, 110, 1.   DOI
22 Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.   DOI   ScienceOn
23 Bishop, A. G.; Macfarlane, D. R.; McNaughton, D.; Forsyth, M. J. Phys. Chem. 1996, 100, 2237.   DOI