• 제목/요약/키워드: nano structure

검색결과 1,957건 처리시간 0.023초

Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Rabczuk, Timon
    • Advances in nano research
    • /
    • 제7권5호
    • /
    • pp.293-310
    • /
    • 2019
  • In this paper, thermal-buckling behavior of the functionally graded (FG) nanocomposite plates reinforced with graphene oxide powder (GOP) is studied under three types of thermal loading once the plate is supposed to be rested on a two-parameter elastic foundation. The effective material properties of the nanocomposite plate are considered to be graded continuously through the thickness according to the Halpin-Tsai micromechanical scheme. Four types of GOPs' distribution namely uniform (U), X, V and O, are considered in a comparative way in order to find out the most efficient model of GOPs' distribution for the purpose of improving the stability limit of the structure. The governing equations of the plate have been derived based on a refined higher-order shear deformation plate theory incorporated with Hamilton's principle and solved analytically via Navier's solution for a simply supported GOP reinforced (GOPR) nanocomposite plate. Some new results are obtained by applying different thermal loadings to the plate according to the GOPs' negative coefficient of thermal expansion and considering both Winkler-type and Pasternak-type foundation models. Besides, detailed parametric studies have been carried out to reveal the influences of the different types of thermal loading, weight fraction of GOP, aspect and length-to-thickness ratios, distribution type, elastic foundation constants and so on, on the critical buckling load of nanocomposite plates. Moreover, the effects of thermal loadings with various types of temperature rise are investigated comparatively according to the graphical results. It is explicitly shown that the buckling behavior of an FG nanocomposite plate is significantly influenced by these effects.

라만 분광법을 활용한 마모 중 DLC 코팅의 구조적 변화 조사 (Investigation of Structural Change of DLC Coating during Frictional Wear by Raman Spectroscopy)

  • 김송희;장재철
    • 한국표면공학회지
    • /
    • 제52권1호
    • /
    • pp.16-22
    • /
    • 2019
  • The structural change of DLC coatings during long-term wear test and dicing test under the low loading condition was investigated. DLC coatings were applied for the precision injection molds of a modified SNCM steel for the extension of life and the micro-diamond blades for the high cutting efficiency and the increase in life. A ball-on-disc wear tests in the mold steel and a dicing tests in the micro-diamond blades were conducted to understand degradation of DLC coatings. The degradation of DLC coatings for the injection mold steel and the micro-diamond blades during the wear and dicing tests were studied with Raman Spectroscopy. Raman peaks were divided two bands(D band and G band) to study the degradation process of DLC structure. By the wear test, polished condition of wear marks were observed to be maintained until 10 hrs of wear test period is given, but small striation marks appeared in 20 hours wear test. It was observed that $I_D/I_G$ ratios changed as the degradation of DLC coatings is proceeded during the wear tests and the dicing tests. It is suggested that the change in $I_D/I_G$ value possibly reflected from the composition of $sp^2$ and $sp^3$ bondings in DLC layers relevant to the change in mechanical and physical property.

Preparation of Flame Retardant and Antibacterial Wood with Composite Membrane Coating

  • XU, Jun-xian;LIU, Yang;WEN, Ming-yu;PARK, Hee-Jun;ZHU, Jia-zhi;LIU, Yu-nan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권6호
    • /
    • pp.658-666
    • /
    • 2021
  • A novel flame retardant and antibacterial composite membrane coating for wood surfaces was prepared by adding POSS-based phosphorous nitrogen flame retardant (later referred to as NH2-POSS) and silver nanoparticles (Ag NPs) to chitosan (CS). The effects of NH2-POSS content (mass fractions of CS 0%, 0.5%, 1%, 3%, 5%, and 7%) on the structure and properties of the composite membrane coating on wood were investigated. The composite film was prepared by the method of blending and ducting. Contact angle, tensile property and antibacterial effects of the composite film were measured, and infrared spectroscopy was used. The results show that the addition of NH2-POSS can not only improve the toughness of the membrane, but also the flame retardancy of the membrane, which improves the application of the membrane in wood products. However, with the addition of NH2-POSS, the transparency of the composite membrane was weakened. The inhibitory effect of the composite membrane on the growth of Escherichia coli was enhanced with the increase in Ag NPs. This research provides a foundation for the application of functional wood.

전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구 (A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process)

  • 이찬;김지민;김형모
    • Tribology and Lubricants
    • /
    • 제37권5호
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

Application of black phosphorus nanodots to live cell imaging

  • Shin, Yong Cheol;Song, Su-Jin;Lee, Yu Bin;Kang, Moon Sung;Lee, Hyun Uk;Oh, Jin-Woo;Han, Dong-Wook
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.352-359
    • /
    • 2018
  • Background: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials. Methods: BP nanodots were prepared by exfoliation with a modified ultrasonication-assisted solution method. The physicochemical properties of BP nanodots were characterized by transmission electron microscopy, dynamic light scattering, Raman spectroscopy, and X-ray diffractometry. In addition, the cytotoxicity of BP nanodots against C2C12 myoblasts was evaluated. Moreover, their cell imaging potential was investigated. Results: Herein, we concentrated on evaluating the cytotoxicity of BP nanodots and investigating their cell imaging potential. It was revealed that the BP nanodots were cytocompatible at a low concentration, although the cell viability was decreased with increasing BP nanodot concentration. Furthermore, our results demonstrated that the cells took up the BP nanodots, and the BP nanodots exhibited green fluorescence. Conclusions: In conclusion, our findings suggest that the BP nanodots have suitable biocompatibility, and are promising candidates as fluorescence probes for biomedical imaging applications.

Clinical development of photodynamic agents and therapeutic applications

  • Baskaran, Rengarajan;Lee, Junghan;Yang, Su-Geun
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.303-310
    • /
    • 2018
  • Background: Photodynamic therapy (PDT) is photo-treatment of malignant or benign diseases using photosensitizing agents, light, and oxygen which generates cytotoxic reactive oxygens and induces tumour regressions. Several photodynamic treatments have been extensively studied and the photosensitizers (PS) are key to their biological efficacy, while laser and oxygen allow to appropriate and flexible delivery for treatment of diseases. Introduction: In presence of oxygen and the specific light triggering, PS is activated from its ground state into an excited singlet state, generates reactive oxygen species (ROS) and induces apoptosis of cancer tissues. Those PS can be divided by its specific efficiency of ROS generation, absorption wavelength and chemical structure. Main body: Up to dates, several PS were approved for clinical applications or under clinical trials. $Photofrin^{(R)}$ is the first clinically approved photosensitizer for the treatment of cancer. The second generation of PS, Porfimer sodium ($Photofrin^{(R)}$), Temoporfin ($Foscan^{(R)}$), Motexafin lutetium, Palladium bacteriopheophorbide, $Purlytin^{(R)}$, Verteporfin ($Visudyne{(R)}$), Talaporfin ($Laserphyrin^{(R)}$) are clinically approved or under-clinical trials. Now, third generation of PS, which can dramatically improve cancer-targeting efficiency by chemical modification, nano-delivery system or antibody conjugation, are extensively studied for clinical development. Conclusion: Here, we discuss up-to-date information on FDA-approved photodynamic agents, the clinical benefits of these agents. However, PDT is still dearth for the treatment of diseases in specifically deep tissue cancer. Next generation PS will be addressed in the future for PDT. We also provide clinical unmet need for the design of new photosensitizers.

Using Taguchi design of experiments for the optimization of electrospun thermoplastic polyurethane scaffolds

  • Nezadi, Maryam;Keshvari, Hamid;Yousefzadeh, Maryam
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.59-69
    • /
    • 2021
  • Electrospinning is a cost-effective and versatile method for producing submicron fibers. Although this method is relatively simple, at the theoretical level the interactions between process parameters and their influence on the fiber morphology are not yet fully understood. In this paper, the aim was finding optimal electrospinning parameters in order to obtain the smallest fiber diameter by using Taguchi's methodology. The nanofibers produced by electrospinning a solution of Thermoplastic Polyurethane (TPU) in Dimethylformamide (DMF). Polymer concentration and process parameters were considered as the effective factors. Taguchi's L9 orthogonal design (4 parameters, 3 levels) was applied to the experiential design. Optimal electrospinning conditions were determined using the signal-to-noise (S/N) ratio with Minitab 17 software. The morphology of the nanofibers was studied by a Scanning Electron Microscope (SEM). Thereafter, a tensile tester machine was used to assess mechanical properties of nanofibrous scaffolds. The analysis of DoE experiments showed that TPU concentration was the most significant parameter. An optimum combination to reach smallest diameters was yielded at 12 wt% polymer concentration, 16 kV of the supply voltage, 0.1 ml/h feed rate and 15 cm tip-to-distance. An empirical model was extracted and verified using confirmation test. The average diameter of nanofibers at the optimum conditions was in the range of 242.10 to 257.92 nm at a confidence level 95% which was in close agreement with the predicted value by the Taguchi technique. Also, the mechanical properties increased with decreasing fibers diameter. This study demonstrated Taguchi method was successfully applied to the optimization of electrospinning conditions for TPU nanofibers and the presented scaffold can mimic the structure of Extracellular Matrix (ECM).

Mesoporous 막 제조를 위한 급냉법에 의한 역 열유도상전이공정 (Formation of Mesoporous Membrane by Reverse Thermally induced Phase Separation (RTIPS) Process Using Flash Freezing)

  • 염충균;김지원;박희영;박성은;이기윤;이규호
    • 멤브레인
    • /
    • 제31권1호
    • /
    • pp.67-79
    • /
    • 2021
  • 급냉법에 의한 역 열유도상전이(RTIPS) 공정을 사용하여 mesoporous polystyrene (PS), polyethersulfone (PES) 막을 제조하였다. 급냉법에 의한 RTIPS 공정은 급냉 및 승온 시 도포 용액 내 용매 분자들의 결정 생성 및 성장을 통해 나노 규모의 상전이를 야기시켜 mesoporous 기공들을 형성된다. 시차주사열량계(TA: DSC) 사용해 측정된 사용 용매 dimethylformamide (DMF)와 여러 고분자 함량의 고분자용액들에 대한 엔탈피 변화와 주사현미경(SEM)을 사용하여 측정한 고분자함량에 따른 제조된 막 구조, 그리고 비표면적 분석기(BET) 사용하여 측정한 고분자 함량에 따라 제조된 막의 기공크기분포 및 표준편차 분석을 통해 RTIPS 공정 시 상전이 거동을 살펴보았다

고출력 슁글드 태양광 모듈의 라미네이션 공정조건 최적화 (Optimizing Lamination Process for High-Power Shingled Photovoltaic Module)

  • 정정호;지홍섭;김정훈;최원용;정채환;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제35권3호
    • /
    • pp.281-291
    • /
    • 2022
  • Global warming is accelerating due to the use of fossil fuels that have been used continuously for centuries. Now, humankind recognizes its seriousness, and is conducting research on searching for eco-friendly and sustainable energy. In the field of solar energy, which is a kind of eco-friendly and sustainable, many studies are being conducted to enhance the output performance of the module. In this study, the output improvement for the shingled module structure was studied. In order to improve the output performance of the module, the thickness of the encapsulant was increased, and the lamination process conditions have been improved accordingly. After that, the crosslinking rate was analyzed, and the suitability of the lamination process conditions was judged using this. In addition, a peeling test was conducted to analyze the correlation between the adhesion of the encapsulant and the output performance of the module. Finally, the optimization for the encapsulant material and the lamination process conditions for high-power shingled modules was established, and accordingly, the market share of high-power shingled modules in the solar module market can be expected to rise.

A simplified directly determination of natural frequencies of CNT: Via aspect ratio

  • Banoqitah, Essam Mohammed;Hussain, Muzamal;Khadimallah, Mohamed A.;Ghandourah, Emad;Yahya, Ahmad;Basha, Muhammad;Alshoaibi, Adil
    • Advances in nano research
    • /
    • 제13권3호
    • /
    • pp.207-216
    • /
    • 2022
  • In this paper, a novel model is developed for frequency behavior of single walled carbon nanotubes. The governing equation of motion is constructed method based on the Sander theory using Rayleigh-Ritz's method The frequencies enhances on increasing the power law index using simply supported, clamped and clamped free end conditions. The frequency curve for C-F is less than other conditions. It is due to the physical constraints which are applied on the edge of the CNT. It is observed that the C-F boundary condition have less frequencies from the other two conditions. The frequency phenomena for zigzag are insignificant throughout the aspect ratio. Moreover when index of power law is increased then frequencies increases for all boundary conditions. The natural frequency mechanism for the armchair (10, 10) for various values of power law index with different boundary conditions is investigated. Here frequencies decrease on increases the aspect ratio for all boundary conditions. The frequency curves of SS-SS edge condition is composed between the C-C and C-F conditions. The curves of frequency are less significant from small aspect ratio (L/d = 4.86 ~ 8.47) and decreases fast for greater ratios. It is found that the frequencies via aspect ratios, armchair (10, 10) have higher values from zigzag (10, 0). It is due to the material structure which is made by the carbon nanotubes. The power law index have momentous effect on the vibration of single walled carbon nanotubes. The present frequency result is also compared numerically experimentally with Raman Spectroscopy.