Browse > Article
http://dx.doi.org/10.12989/anr.2022.13.3.207

A simplified directly determination of natural frequencies of CNT: Via aspect ratio  

Banoqitah, Essam Mohammed (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Ghandourah, Emad (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University)
Yahya, Ahmad (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University)
Basha, Muhammad (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
Alshoaibi, Adil (Department of Physics, College of Science, King Faisal University)
Publication Information
Advances in nano research / v.13, no.3, 2022 , pp. 207-216 More about this Journal
Abstract
In this paper, a novel model is developed for frequency behavior of single walled carbon nanotubes. The governing equation of motion is constructed method based on the Sander theory using Rayleigh-Ritz's method The frequencies enhances on increasing the power law index using simply supported, clamped and clamped free end conditions. The frequency curve for C-F is less than other conditions. It is due to the physical constraints which are applied on the edge of the CNT. It is observed that the C-F boundary condition have less frequencies from the other two conditions. The frequency phenomena for zigzag are insignificant throughout the aspect ratio. Moreover when index of power law is increased then frequencies increases for all boundary conditions. The natural frequency mechanism for the armchair (10, 10) for various values of power law index with different boundary conditions is investigated. Here frequencies decrease on increases the aspect ratio for all boundary conditions. The frequency curves of SS-SS edge condition is composed between the C-C and C-F conditions. The curves of frequency are less significant from small aspect ratio (L/d = 4.86 ~ 8.47) and decreases fast for greater ratios. It is found that the frequencies via aspect ratios, armchair (10, 10) have higher values from zigzag (10, 0). It is due to the material structure which is made by the carbon nanotubes. The power law index have momentous effect on the vibration of single walled carbon nanotubes. The present frequency result is also compared numerically experimentally with Raman Spectroscopy.
Keywords
clamped-free; fraction law; natural frequency; Rayleigh-Ritz's method;
Citations & Related Records
Times Cited By KSCI : 39  (Citation Analysis)
연도 인용수 순위
1 Shen, H.S. (2009) "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.   DOI
2 Si, H., Shen, D., Xia, J, and Tahouneh, V. (2020), "Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers", Steel Compos. Struct., 36(1), 1-16. https://doi.org/10.12989/scs.2020.36.1.001.   DOI
3 Simsek, M., (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43, 182-191. https://doi.org/10.1016/j.physe.2010.07.003.   DOI
4 Selim, M.M. (2010), "Torsional vibration of carbon nanotubes under initial compression stress", Brazil. J. Phys., 40(3), 283-287. https://doi.org/10.1590/S0103-97332010000300004.   DOI
5 Shahsavari, D., Karami, B, and Janghorban, M. (2019), "Sizedependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.   DOI
6 Shakouri, A., Lin, R, and Ng, T., (2009), "Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method", J. Appl. Phys., 106(9), 094307. https://doi.org/10.1063/1.3239993.   DOI
7 Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.   DOI
8 Lordi, V. and Yao, N., (1998), "Young's modulus of single-walled carbon nanotubes", J. Appl. Phys., 84, 1939-1943. https://doi.org/10.1063/1.368323.   DOI
9 Li, C, and Chou, T.W., (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solid Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8.   DOI
10 Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodrigues- Macias, F., Shon, Y.S., Lee, T.R., Colbert, D.T, and Smalley, R.E., (1998), "Fullerene pipes", Science, 280, 1253-1256. https://doi.org/10.1126/science.280.5367.1253.   DOI
11 Malikan, M. (2019), "On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory", J. Appl. Comput. Mech., 5(1), 103-112. https://doi.org/10.22055/JACM.2018.25507.1274.   DOI
12 Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.   DOI
13 Zhao, Q., Gan, Z, and Zhuang, Q., (2002), "Electrochemical sensors based on carbon nanotubes", Electroanalysis, 14(23), 1609-1613. https://doi.org/10.3390/s90402289.   DOI
14 Ehyaei, J, and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179-192. https://doi.org/10.12989/anr.2017.5.2.179.   DOI
15 Smalley, R.E., Li, Y., Moore, V.C., Price, B.C., Colorado, Jr, R., Schmidt, H.K., Hauge, R.H., Barron, A.R, and Tour, J.M. (2006), "Single wall carbon nanotube amplification: En route to a type-specific growth mechanism", J. Am. Chem. Soc., 128, 15824-15829. https://doi.org/10.1021/ja065767r.   DOI
16 Yang, J., Ke, L.L, and Kitipornchai, S., (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E, 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035.   DOI
17 Zine, A., Tounsi, A., Draiche, K., Sekkal, M, and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/scs.2018.26.2.125.   DOI
18 Treacy, M.J., Ebbesen, T.W, and Gibson, J.M., (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0.   DOI
19 Mungra, C, and Webb, J.F. (2015), "Free vibration analysis of single-walled carbon nanotubes based on the continuum finite element method", Global J. Technol. Optim, 6, 173. http://doi.org/10.4172/2229-8711.1000173.   DOI
20 Murmu, T, and Pradhan, S.C., (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019.   DOI
21 Farokhian, A, and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555.   DOI
22 Civalek, O . (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Meth. Eng., 121(5), 990-1019.   DOI
23 Civalek, O, and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587.   DOI
24 Draoui, A., Zidour, M., Tounsi, A, and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57(117-135). https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.   DOI
25 Ebrahimi, F., Dabbagh, A., Rabczuk, T, and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porositydependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.   DOI
26 El-sherbiny, S.G., Wageh, S., Elhalafawy, S.M, and Sharshar, A.A. (2013), "Carbon nanotube antennas analysis and applications", Adv. Nano Res., 1(1), 13-17. https://doi.org/10.12989/anr.2013.1.1.013.   DOI
27 Flugge, W., (1962), Stresses in Shells, Springer-Verlag, Berlin, Germany.
28 Forsberg, K., (1964), "Influence of boundary conditions on modal characteristics of cylindrical shells", J. Am. Inst. Aeronaut. Astronaut., 2, 182-189. https://doi.org/10.2514/3.55115.   DOI
29 Grupta, S.S, and Barta, R.C. (2008), "Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes", Comp. Mater. Sci, 43, 715-723. https://doi.org/10.1016/j.commatsci.2008.01.032.   DOI
30 Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-242. https://doi.org/10.12989/anr.2018.6.3.219.   DOI
31 Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.   DOI
32 Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.   DOI
33 Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A, and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.   DOI
34 Narendar S, and Gopalakrishnan S., (2011), "Critical buckling temperature of single-walled carbon nanotubes embedded in a one-parameter elastic medium based on nonlocal continuum mechanics", Physica E, 43, 1185-1191. https://doi.org/10.1016/j.physe.2011.01.026.   DOI
35 Natsuki, T., Endo, M. and Tsuda, H. (2009), "Vibration analysis of embedded carbon nanotubes using wave propagation approach", J. Appl. Phys., 9(3), 034311. https://doi.org/10.1063/1.2170418.   DOI
36 Olofinkua, J. (2018), "On the effect of nanofluid flow and heat transfer with injection through an expanding or contracting porous channel", J. Comput. Appl. Mech., 49(1), 1-8. https://doi.org/10.22059/JCAMECH.2018.255680.264.   DOI
37 Alzabeebee, S. (2020), "Dynamic response and design of a skirted strip foundation subjected to vertical vibration", Geomech. Eng., 20(4), 345-358. https://doi.org/10.12989/gae.2020.20.4.345.   DOI
38 Attarnejad, R, and Ershadbakhsh, A.M. (2016), "Analysis of Euler-Bernoulli nanobeams: A mechanical-based solution", J. Comput. Appl. Mech., 47(2), 159-180. https://doi.org/10.22059/JCAMECH.2017.140165.97.   DOI
39 Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019). The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.   DOI
40 Bensattalah, T., Bouakkaz, K., Zidour, M, and Daouadji, T.H., (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339.   DOI
41 Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.   DOI
42 Rafiee, R, and Mahdavi, M. (2016), "Molecular dynamics simulation of defected carbon nanotubes", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 230(2), 654-662. https://doi.org/10.1177/1464420715584809.   DOI
43 Rana, G.C., Chand, R., Sharma, V, and Sharda, A. (2016), "On the onset of triple-diffusive convection in a layer of nanofluid", J. Comput. Appl. Mech., 47(1), 67-77. https://doi.org/10.22059/JCAMECH.2016.59256.   DOI
44 Safaei, B., Khoda, F.H, and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res, 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.   DOI
45 Sanchez-Valencia, J.R., Dienel, T., Groning, O., Shorubalko, I., Mueller, A., Jansen, M., Amsharov, K., Ruffieux, P, and Fasel, R. (2014), "Controlled synthesis of single-chiral carbon nanotubes", Nature, 512, 61-64. https://doi.org/10.1038/nature13607.   DOI
46 Soltani, P., Saberian, J, and Bahramian, R., (2016), "Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory", J. Comput. Nonlinear Dyn., 11(1), 011002. https://doi.org/10.1115/1.4030753.   DOI
47 Han, J., Globus A, Jaffe, R, and Deardorff, G., (1997), "Molecular dynamics simulations of carbon nanotube-based gears", Nanotechnology, 8(3), 95. https://doi.org/10.1088/0957-4484/8/3/001/meta.   DOI
48 Hersham, M.C., (2008), "Progress towards monodisperse singlewalled carbon nanotubes", Nature Nanotech, 3, 387-394. https://doi.org/10.1142/9789814287005_0001.   DOI
49 Ahmed, R.A., Fenjan, R.M, and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng, 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.   DOI
50 Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.   DOI
51 Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392.   DOI
52 Ansari, R., Rouhi, S, and Ahmadi, M. (2018), "On the thermal conductivity of carbon nanotube/polypropylene nanocomposites by finite element method", J. Comput. Appl. Mech., 49(1), 70-85. https://doi.org/10.22059/jcamech.2017.243530.195   DOI
53 Banerjee, J., Williams, F., (1992), "Coupled bending-torsional dynamic stiffness matrix for Timoshenko beam elements", Comput. Struct., 42(3), 301-310. https://doi.org/10.1016/0020-7683(94)90075-2.   DOI
54 Khalaf, B.S., Fenjan, R.M, and Faleh, N.M. (2019). Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites", Adv. Mater. Res., 8(3), 219. https://doi.org/10.12989/amr.2019.8.3.219.   DOI
55 Hsu, J.C., Chang, R.P, and Chang, W.J., (2008), "Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory", Phys. Lett. A, 372(16), 2757-2759. https://doi.org/10.1016/j.physleta.2008.01.007.   DOI
56 Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus, M.S. (2001), "Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant raman scattering", Phys. Rev. Lett., 86(6), 1118-1121. https://doi.org/10.1103/PhysRevLett.86.1118.   DOI
57 Karami, B., Janghorban, M, and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Walled Structures, 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.   DOI
58 Kiani, K., (2014), "Vibration and instability of a single-walled carbon nanotube in a three dimensional magnetic field", J. Phys. Chem. Solid, 75(1), 15-22. https://doi.org/10.1016/j.jpcs.2013.07.022.   DOI
59 Ghavanloo, E, and Fazelzadeh, S.A., (2012), "Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect", Appl. Math. Modell., 36(10), 4988-5000. https://doi.org/10.1016/j.apm.2011.12.036.   DOI
60 Fatahi-Vajari. A., Azimzadeh, Z., Hussain. M., (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203.   DOI
61 Harik, V.M. (2002), "Mechanics of carbon nanotubes: applicability of the continuum-beam models", Comp. Mater. Sci., 24, 328-342. https://doi.org/10.1016/S0927-0256(01)00255-5.   DOI
62 Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q, and Yakobson, B.I., (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.   DOI
63 Ke, L.L., Xiang, Y., Yang, J, and Kitipornchai, S., (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002.   DOI
64 Kocaturk, T, and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417.   DOI
65 Kulathunga, D.D.T.K., Ang, K.K, and Reddy, J.N., (2009), "Accurate modeling of buckling of single-and double-walled carbon nanotubes based on shell theories", J. Phys. Condens. Mat., 21(43), 435301. https://doi.org/10.1088/0953-8984/21/43/435301/meta.   DOI
66 Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A, and Benzair, A., (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029.   DOI
67 Das, S.L., Mandal, T, and Gupta, S.S., (2013), "Inextensional vibration of zig-zag single-walled carbon nanotubes using nonlocal elasticity theories", Int. J. Solid Struct., 50(18), 2792-2797. https://doi.org/10.1016/j.ijsolstr.2013.04.019.   DOI
68 Duan, W.H., Wang, C.M, and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140.   DOI
69 Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H, and Tounsi, A., (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.   DOI
70 Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N, and Treacy. M.M.J., (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B, 58(20), 14013-14019. https://doi.org/10.1103/PhysRevB.58.14013.   DOI
71 Cao, Y., Musharavati, F., Baharom, S., Talebizadehsardari, P., Sebaey, T.A., Eyvazian, A, and Zain, A. M. (2020), "Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution", Steel Compos. Struct., 7(2), 253-258. https://doi.org/10.12989/scs.2020.37.2.253.   DOI
72 Tserpes, K.I, and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B Eng., 36, 468-477. https://doi.org/10.1016/j.compositesb.2004.10.003.   DOI
73 Bouanati, S., Benrahou, K.H., Atmane, H.A., Yahia, S.A., Bernard, F., Tounsi, A, and Bedia, E.A. (2019), "Investigation of wave propagation in anisotropic plates via quasi 3D HSDT", Geomech. Eng., 18(1), 85-96. https://doi.org/10.12989/gae.2019.18.1.085.   DOI
74 Bouazza, M., Antar, K., Amara, K., Benyoucef, S, and Bedia, E.A. A. (2019), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng., 18(5), 555-566. https://doi.org/10.12989/gae.2019.18.5.555.   DOI
75 Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A. A., Tounsi, A, and Mahmoud, S.R. (2019), "The effect of parameters of visco- Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.   DOI
76 Budiansky, B., Sanders, J.L., (1963), On the Best First Order Linear Shell Theory, Progress in Applied Mechanics, MacMillan, Inc., New York, U.S.A.
77 Chawis, T., Somchai, C, and Li, T., (2013), "Nonlocal theory for free vibration of single-walled carbon nanotubes", Adv. Mater. Res., 747, 257-260. https://doi.org/10.4028/www.scientific.net/AMR.747.257.   DOI
78 Chen, X, and Cao, G.X., (2006), "A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation", Nanotechnology, 17, 1004. https://doi.org/10.1088/0957-4484/17/4/027.   DOI
79 Emdadi, M., Mohammadimehr, M, and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109.   DOI
80 Eltaher, M.A., Almalki T.A., Ahmed K.I, and Almitani, K.H., (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.   DOI
81 Lata, P, and Kaur, H. (2019)", Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369.   DOI
82 Ebrahimi F, and Mahmoodi, F., (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., 6(1), 57-80. https://doi.org/10.12989/anr.2018.6.1.057.   DOI
83 Elishakoff, I. and Pentaras, D. (2009), "Fundamental natural frequencies of double-walled carbon nanotubes", J. Sound Vib., 322, 652-664. https://doi.org/10.1016/j.jsv.2009.02.037.   DOI
84 Kumar, B.R., (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135.   DOI
85 Lata, P, and Kaur, I. (2019), "Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate", Geomech. Eng., 19(1), 29-36. https://doi.org/10.12989/gae.2019.19.1.029.   DOI
86 Lee, H.L, and Chang, W.J., (2008), "Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory", J. Appl. Phys., 103(2), 024302. https://doi.org/10.1063/1.2822099.   DOI
87 Robertson, D.H., Brenner, D.W. and Mintmire, J.W. (1992), "Energetics of nano-scale graphitic tubule", Phys. Rev. B, 45, 12592. https://doi.org/10.1103/PhysRevB.45.12592.   DOI
88 Vodenitcharova, T, and Zhang, L.C. (2003), "Effective wall thickness of a single-walled carbon nanotube", Phys. Rev. B, 68(16), 165401. https://doi.org/10.1103/PhysRevB.68.165401.   DOI
89 Tu, Z.C, and Ou-Yang, Z.C., (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number", Phys. Rev. B., 65, 233407. https://doi.org/10.1103/PhysRevB.65.233407.   DOI
90 Uyar, G.G, and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545.   DOI
91 Wang, C.Y, and Zhang, L.C., (2007), "Modeling the free vibration of single-walled carbon nanotubes", 5th Australasian Congress on Applied Mechanics, ACAM, Brisbane, Australia, 10-12. 5th Australasian Congress on Applied Mechanics, ACAM 2007 10-12 December 2007, Brisbane, Australia.
92 Warburton, G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7(4), 399-407. https://doi.org/10.1243/JMES-JOUR-1965-007-062-02.   DOI
93 Wu, C.P., Chen, Y.H., Hong, Z.L, and Lin, C.H., (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.   DOI
94 Yakobson, B.I., Brabec, C.J. and Bernholc, J., (1996), "Nanomechanics of carbon tubes: Instabilities beyond linear response", Phys. Rev. Lett., 76(14), 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511.   DOI
95 Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.   DOI
96 Zhang, Y.Y., Wang, C.M, and Tan, V.B.C., (2009), "Assessment of Timoshenko beam models for vibrational behavior of singlewalled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech, 1(1), 89-106. https://espace.library.uq.edu.au/view/UQ:417724.
97 Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A, and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct, 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.   DOI
98 Ahangarnazha, B.H., Pourbaba, M, and Afkar, A. (2020), "Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)", Steel Compos. Struct., 35(4), 463-474. https://doi.org/10.12989/scs.2020.35.4.46.   DOI
99 Ahmed, R.A., Mustafa, N.M., Faleh, N.M, and Fenjan, R.M. (2020), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., 76(3), 413-420. https://doi.org/10.12989/sem.2020.76.3.413.   DOI
100 Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.   DOI
101 Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1007/s40430-018-1315-1.   DOI