Browse > Article
http://dx.doi.org/10.12989/anr.2019.7.5.293

Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates  

Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Nouraei, Mostafa (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
Dabbagh, Ali (School of Mechanical Engineering, College of Engineering, University of Tehran)
Rabczuk, Timon (Institute of Structural Mechanics (ISM), Bauhaus-University Weimar)
Publication Information
Advances in nano research / v.7, no.5, 2019 , pp. 293-310 More about this Journal
Abstract
In this paper, thermal-buckling behavior of the functionally graded (FG) nanocomposite plates reinforced with graphene oxide powder (GOP) is studied under three types of thermal loading once the plate is supposed to be rested on a two-parameter elastic foundation. The effective material properties of the nanocomposite plate are considered to be graded continuously through the thickness according to the Halpin-Tsai micromechanical scheme. Four types of GOPs' distribution namely uniform (U), X, V and O, are considered in a comparative way in order to find out the most efficient model of GOPs' distribution for the purpose of improving the stability limit of the structure. The governing equations of the plate have been derived based on a refined higher-order shear deformation plate theory incorporated with Hamilton's principle and solved analytically via Navier's solution for a simply supported GOP reinforced (GOPR) nanocomposite plate. Some new results are obtained by applying different thermal loadings to the plate according to the GOPs' negative coefficient of thermal expansion and considering both Winkler-type and Pasternak-type foundation models. Besides, detailed parametric studies have been carried out to reveal the influences of the different types of thermal loading, weight fraction of GOP, aspect and length-to-thickness ratios, distribution type, elastic foundation constants and so on, on the critical buckling load of nanocomposite plates. Moreover, the effects of thermal loadings with various types of temperature rise are investigated comparatively according to the graphical results. It is explicitly shown that the buckling behavior of an FG nanocomposite plate is significantly influenced by these effects.
Keywords
thermal buckling; graphene oxide powder; refined higher-order plate theory; elastic foundations;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Zhao, Z., Feng, C., Wang, Y. and Yang, J. (2017), "Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs)", Compos. Struct., 180, 799-808. https://doi.org/10.1016/j.compstruct.2017.08.044   DOI
2 Zhen, W. and Wanji, C. (2006), "Free vibration of laminated composite and sandwich plates using global-local higher-order theory", J. Sound Vib., 298, 333-349. https://doi.org/10.1016/j.jsv.2006.05.022   DOI
3 Zhu, P., Lei, Z. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94, 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010   DOI
4 Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693
5 Arefi, M., Bidgoli, E.M.-R., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. Part B: Eng., 166, 1-12. https://doi.org/10.1021/nl0731872   DOI
6 Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., Int. J., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195   DOI
7 Anlas, G. and Goker, G. (2001), "Vibration analysis of skew fibre-reinforced composite laminated plates", J. Sound Vib., 242, 265-276. https://doi.org/10.1006/jsvi.2000.3366   DOI
8 Arani, A.G., Maghamikia, S., Mohammadimehr, M. and Arefmanesh, A. (2011), "Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods", J. Mech. Sci. Technol., 25, 809-820. https://doi.org/10.1007/s12206-011-0127-3   DOI
9 Bakhadda, B., Bouiadjra, M.B., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., Int. J., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311
10 Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C.N. (2008), "Superior thermal conductivity of single-layer graphene", Nano Letters, 8, 902-907. https://doi.org/10.1021/nl0731872   DOI
11 Baltacioglu, A., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Press. Vessels Pip., 88, 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004   DOI
12 Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., Int. J., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393   DOI
13 Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., Int. J., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061
14 Barati, M.R. and Zenkour, A.M. (2017), "Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection", Compos. Struct., 181, 194-202. https://doi.org/10.1016/j.compstruct.2017.08.082   DOI
15 Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., Int. J., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695
16 Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147
17 Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., Int. J., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
18 Cai, W., Moore, A.L., Zhu, Y., Li, X., Chen, S., Shi, L. and Ruoff, R.S. (2010), "Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition", Nano Lett., 10, 1645-1651. https://doi.org/10.1021/nl9041966   DOI
19 Ebrahimi, F. and Barati, M.R. (2016a), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", Int. J. Smart Nano Mater., 7(3), 119-143. https://doi.org/10.1080/19475411.2016.1223203   DOI
20 Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177/1077546316646239   DOI
21 Ebrahimi, F. and Barati, M.R. (2016c), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9   DOI
22 Ebrahimi, F. and Barati, M.R. (2016d), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014   DOI
23 Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intel. Mater. Syst. Struct., 28(11), 1472-1490. https://doi.org/10.1177/1045389X16672569   DOI
24 Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4   DOI
25 Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y   DOI
26 Ebrahimi, F." and Barati, M.R. (2016h), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18. https://doi.org/10.1007/s00339-016-0001-3
27 Ebrahimi, F. and Barati, M.R. (2016i), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2   DOI
28 Ebrahimi, F. and Barati, M.R. (2016l), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 937-952. https://doi.org/10.1007/s40430-016-0551-5   DOI
29 Ebrahimi, F. and Barati, M.R. (2016j), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001   DOI
30 Ebrahimi, F. and Barati, M.R. (2016k), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092   DOI
31 Ebrahimi, F. and Barati, M.R. (2016m), "Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams", Eur. Phys. J. Plus, 131(7), 1-14. https://doi.org/10.1140/epjp/i2016-16238-8   DOI
32 Ebrahimi, F. and Barati, M.R. (2016n), "Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams", J. Mech., 1-11. https://doi.org/10.1017/jmech.2016.46
33 Ebrahimi, F. and Barati, M.R. (2017), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058   DOI
34 Ebrahimi, F. and Barati, M.R. (2019), "On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates", Adv. Nano Res., Int. J., 7(1), 63-75. https://doi.org/10.12989/anr.2019.7.1.063
35 Ebrahimi, F. and Dabbagh, A. (2016), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058   DOI
36 Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Thermal Stresses, 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684   DOI
37 Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24, 820-829. https://doi.org/10.1080/15376494.2016.1196786   DOI
38 Ebrahimi, F. and Haghi, P. (2018a), "Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment", Adv. Nano Res., Int. J., 6(3), 201-217. https://doi.org/10.12989/anr.2018.6.3.201   DOI
39 Ebrahimi, F. and Haghi, P. (2018b), "A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects", Coupl. Syst. Mech., Int. J., 7(4), 373-393. https://doi.org/10.12989/csm.2018.7.4.373
40 Ebrahimi, F. and Rostami, P. (2018), "Wave propagation analysis of carbon nanotube reinforced composite beams", Eur. Phys. J. Plus, 133, 285. https://doi.org/10.1140/epjp/i2018-12069-y   DOI
41 Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008   DOI
42 Ebrahimi, F., Barati, M.R. and Haghi, P. (2018a), "Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory", J. Vib. Control, 24, 3809-3818. https://doi.org/10.1177/1077546317711537   DOI
43 Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound Vib., 329, 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020   DOI
44 Ebrahimi, F., Haghi, P. and Zenkour, A.M. (2018b), "Modelling of thermally affected elastic wave propagation within rotating Mori-Tanaka-based heterogeneous nanostructures", Microsyst. Technol., 24, 2683-2693. https://doi.org/10.1007/s00542-018-3800-y   DOI
45 Ebrahimi, F., Dehghan, M. and Seyfi, A. (2019), "Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes", Adv. Nano Res., Int. J., 7(1), 1-11. https://doi.org/10.12989/anr.2019.7.1.001
46 Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs)", Compos. Part B: Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024   DOI
47 Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuations", Eur. Phys. J. Plus, 131(5), 1-19. https://doi.org/10.1140/epjp/i2016-16160-1   DOI
48 Gomez-Navarro, C., Burghard, M. and Kern, K. (2008), "Elastic properties of chemically derived single graphene sheets", Nano Letters, 8, 2045-2049. https://doi.org/10.1021/nl801384y   DOI
49 Kant, T. and Babu, C. (2000), "Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models", Compos. Struct., 49, 77-85. https://doi.org/10.1016/S0263-8223(99)00127-0   DOI
50 Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361
51 Liu, G., Chen, X. and Reddy, J. (2002), "Buckling of symmetrically laminated composite plates using the element-free Galerkin method", Int. J. Struct. Stabil. Dyn., 2, 281-294. https://doi.org/10.1142/S0219455402000634   DOI
52 Kiani, Y. (2019), "Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment", Compos. Part B: Eng., 156, 128-137. https://doi.org/10.1016/j.compstruct.2012.11.006   DOI
53 Lei, Z., Liew, K. and Yu, J. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006   DOI
54 Liew, K., Lei, Z., Yu, J. and Zhang, L. (2014), "Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Methods Appl. Mech. Eng., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001   DOI
55 Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002   DOI
56 Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157
57 Mikoushkin, V., Shnitov, V., Nikonov, S.Y., Dideykin, A., Vul, A.Y., Sakseev, D., Vyalikh, D. and Vilkov, O.Y. (2011), "Controlling graphite oxide bandgap width by reduction in hydrogen", Techn. Phys. Lett., 37, 942. https://doi.org/10.1134/S1063785011100257   DOI
58 Potts, J.R., Dreyer, D.R., Bielawski, C.W. and Ruoff, R.S. (2011), "Graphene-based polymer nanocomposites", Polymer, 52, 5-25. https://doi.org/10.1016/j.polymer.2010.11.042   DOI
59 Qaderi, S., Ebrahimi, F. and Seyfi, A. (2019), "An investigation of the vibration of multi-layer composite beams reinforced by graphene platelets resting on two parameter viscoelastic foundation", SN Applied Sciences, 1, 399. https://doi.org/10.1007/s42452-019-0252-7   DOI
60 Pradhan, S.C. and Phadikar, J.K. (2011), "Nonlocal theory for buckling of nanoplates", Int. J. Struct. Stabil. Dyn., 11(3), 411-429. https://doi.org/10.1142/S021945541100418X   DOI
61 Qiao, P., Zou, G. and Davalos, J.F. (2003), "Flexural-torsional buckling of fiber-reinforced plastic composite cantilever I-beams", Compos. Struct., 60, 205-217. https://doi.org/10.1016/S0263-8223(02)00304-5   DOI
62 Safarpour, H., Ghanbari, B. and Ghadiri, M. (2019), "Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell", Appl. Math. Model., 65, 428-442. https://doi.org/10.1016/j.apm.2018.08.028   DOI
63 Shan, L. and Qiao, P. (2005), "Flexural-torsional buckling of fiber-reinforced plastic composite open channel beams", Compos. Struct., 68, 211-224. https://doi.org/10.1016/j.compstruct.2004.03.015   DOI
64 Shariyat, M. (2010), "A generalized global-local high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads", Int. J. Mech. Sci., 52, 495-514. https://doi.org/10.1016/j.ijmecsci.2009.11.010   DOI
65 Shen, H.-S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213, 196-205. https://doi.org/10.1016/j.cma.2011.11.025   DOI
66 Shen, H.-S. and Zhang, C.-L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31, 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048   DOI
67 Sobhani, A., Saeedifar, M., Najafabadi, M.A., Fotouhi, M. and Zarouchas, D. (2018), "The study of buckling and post-buckling behavior of laminated composites consisting multiple delaminations using acoustic emission", Thin-Wall. Struct., 127, 145-156. https://doi.org/10.1016/j.tws.2018.02.011   DOI
68 Shen, H.-S., Xiang, Y. and Lin, F. (2017a), "Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments", Compos. Struct., 170, 80-90. https://doi.org/10.1016/j.compstruct.2017.03.001   DOI
69 Shen, H.-S., Xiang, Y. and Lin, F. (2017b), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments", Comput. Methods Appl. Mech. Eng., 319, 175-193. https://doi.org/10.1016/j.matdes.2010.01.048   DOI
70 Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T. and Vu, T.-V. (2012), "Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method", Compos. Struct., 94, 1677-1693. https://doi.org/10.1016/j.compstruct.2012.01.012   DOI
71 Song, M., Yang, J. and Kitipornchai, S. (2018), "Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Part B: Eng., 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043   DOI
72 Suk, J.W., Piner, R.D., An, J. and Ruoff, R.S. (2010), "Mechanical properties of monolayer graphene oxide", ACS Nano, 4, 6557-6564. https://doi.org/10.1021/nn101781v   DOI
73 Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T. and Rabczuk, T. (2012), "Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach", Int. J. Numer. Methods Eng., 91, 571-603. https://doi.org/10.1002/nme.4282   DOI
74 Tounsi, A., Benguediab, S., Adda, B., Semmah, A., and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001   DOI
75 Thai, C.H., Ferreira, A., Tran, T. and Phung-Van, P. (2019), "Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation", Compos. Struct., 220, 749-759. https://doi.org/10.1016/j.compstruct.2019.03.100   DOI
76 Torabi, J., Ansari, R. and Hassani, R. (2019), "Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory", Eur. J. Mech.-A/Solids, 73, 144-160. https://doi.org/10.1016/j.euromechsol.2018.07.009   DOI
77 Tornabene, F., Fantuzzi, N., Viola, E. and Carrera, E. (2014), "Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method", Compos. Struct., 107, 675-697. https://doi.org/10.1016/j.compstruct.2013.08.038   DOI
78 Urthaler, Y. and Reddy, J. (2008), "A mixed finite element for the nonlinear bending analysis of laminated composite plates based on FSDT", Mech. Adv. Mater. Struct., 15, 335-354. https://doi.org/10.1080/15376490802045671   DOI
79 Van Es, M. (2001), "Polymer-clay nanocomposites", Ph.D. Thesis; Delft University, Delft, Netherlands.
80 Wang, Z.-X. and Shen, H.-S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Computat. Mater. Sci., 50, 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005   DOI
81 Wang, Q., Shi, D., Liang, Q. and Pang, F. (2017), "Free vibrations of composite laminated doubly-curved shells and panels of revolution with general elastic restraints", Appl. Math. Model., 46, 227-262. https://doi.org/10.1016/j.apm.2017.01.070   DOI
82 Yas, M. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012   DOI
83 Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Computat. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028   DOI
84 Wu, H., Yang, J. and Kitipornchai, S. (2016), "Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections", Compos. Part B: Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007   DOI
85 Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct., 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048   DOI
86 Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015
87 Zhang, L., Lei, Z. and Liew, K. (2015), "Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates", Compos. Struct., 122, 172-183. https://doi.org/10.1016/j.ijpvp.2012.07.012   DOI
88 Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2018), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory", Mech. Adv. Mater. Struct., 1-9. https://doi.org/10.1080/15376494.2018.1444216