Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.1.059

Using Taguchi design of experiments for the optimization of electrospun thermoplastic polyurethane scaffolds  

Nezadi, Maryam (Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic))
Keshvari, Hamid (Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic))
Yousefzadeh, Maryam (Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic))
Publication Information
Advances in nano research / v.10, no.1, 2021 , pp. 59-69 More about this Journal
Abstract
Electrospinning is a cost-effective and versatile method for producing submicron fibers. Although this method is relatively simple, at the theoretical level the interactions between process parameters and their influence on the fiber morphology are not yet fully understood. In this paper, the aim was finding optimal electrospinning parameters in order to obtain the smallest fiber diameter by using Taguchi's methodology. The nanofibers produced by electrospinning a solution of Thermoplastic Polyurethane (TPU) in Dimethylformamide (DMF). Polymer concentration and process parameters were considered as the effective factors. Taguchi's L9 orthogonal design (4 parameters, 3 levels) was applied to the experiential design. Optimal electrospinning conditions were determined using the signal-to-noise (S/N) ratio with Minitab 17 software. The morphology of the nanofibers was studied by a Scanning Electron Microscope (SEM). Thereafter, a tensile tester machine was used to assess mechanical properties of nanofibrous scaffolds. The analysis of DoE experiments showed that TPU concentration was the most significant parameter. An optimum combination to reach smallest diameters was yielded at 12 wt% polymer concentration, 16 kV of the supply voltage, 0.1 ml/h feed rate and 15 cm tip-to-distance. An empirical model was extracted and verified using confirmation test. The average diameter of nanofibers at the optimum conditions was in the range of 242.10 to 257.92 nm at a confidence level 95% which was in close agreement with the predicted value by the Taguchi technique. Also, the mechanical properties increased with decreasing fibers diameter. This study demonstrated Taguchi method was successfully applied to the optimization of electrospinning conditions for TPU nanofibers and the presented scaffold can mimic the structure of Extracellular Matrix (ECM).
Keywords
electrospinning; nanofibers; thermoplastic polyurethane; Taguchi's orthogonal design; optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, H., Sinha, T.K., Oh, J.S. and Kim, J.K. (2018), "Soft and flexible bilayer thermoplastic polyurethane foam for development of bioinspired artificial skin", ACS Appl. Mater. Interf., 10(16), 14008-14016. https://doi.org/10.1021/acsami.8b01026.   DOI
2 Mohammad Khanlou, H., Chin Ang, B., Talebian, S., Muhammad Afifi, A. and Andriyana, A. (2015), "Electrospinning of polymethyl methacrylate nanofibers: optimization of processing parameters using the Taguchi design of experiments", Text. Res. J., 85(4), 356-368. https://doi.org/10.1177/0040517514547208.   DOI
3 Mohammadian, M. and Haghi, A. (2014), "Systematic parameter study for nano-fiber fabrication via electrospinning process", Bulg. Chem. Commun., 46, 545-55.
4 Abdelhakim, H.E., Coupe, A., Tuleu, C., Edirisinghe, M. and Craig, D.Q. (2019), "Electrospinning optimization of eudragit E PO with and without chlorpheniramine maleate using a design of experiment approach", Mol. Pharm., 16(6), 2557-2568. https://doi.org/10.1021/acs.molpharmaceut.9b00159.   DOI
5 Albetran, H., Dong, Y. and Low, I.M. (2015), "Characterization and optimization of electrospun TiO2/PVP nanofibers using Taguchi design of experiment method", J. Asian Ceramic Soc., 3(3), 292-300. https://doi.org/10.1016/j.jascer.2015.05.001.   DOI
6 Ruiter, F.A.A., Alexander, C., Rose, F.R. and Segal, J. (2017), "A design of experiments approach to identify the influencing parameters that determine poly-D, L-lactic acid (PDLLA) electrospun scaffold morphologies", Biomed. Mater., 12(5), 055009. https://doi.org/10.1088/1748-605X/aa7b54.   DOI
7 Patra, S., Easteal, A. and Bhattacharyya, D. (2009), "Parametric study of manufacturing poly (lactic) acid nanofibrous mat by electrospinning", J. Mater. Sci., 44(2), 647-654. https://doi.org/10.1007/s10853-008-3050-y.   DOI
8 Pirsalami, S., Zebarjad, S. and Daneshmanesh, H. (2016), "Evaluation and optimization of electrospun polyvinyl alcohol fibers via Taguchi methodology", Int. Polym. Process., 31(4), 503-507. https://doi.org/10.3139/217.3278.   DOI
9 Ruder, C., Sauter, T., Kratz, K., Haase, T., Peter, J., Jung, F. and Zohlnhofer, D. (2013), "Influence of fibre diameter and orientation of electrospun copolyetheresterurethanes on smooth muscle and endothelial cell behaviour", Clin. Hemorheol. Microcirc., 55(4), 513-522. https://doi.org/10.3233/CH-131787.   DOI
10 Amini, N., Kalaee, M., Mazinani, S., Pilevar, S. and Ranaei-Siadat, S.O. (2013), "Morphological optimization of electrospun polyacrylamide/MWCNTs nanocomposite nanofibers using Taguchi's experimental design", Int. J. Adv. Manuf. Technol., 69(1-4), 139-146. https://doi.org/10.1007/s00170-013-5006-x.   DOI
11 Andrzej, M., Srecko, K., Maruda, R.W., Stanislaw, L. and Krolczyk, G.M. (2015), "Taguchi design of experiment versus dynamic programming approach in the optimization of turning process", Appl. Mech. Mater., 808, 66. https://doi.org/10.4028/www.scientific.net/AMM.808.66.   DOI
12 Anindyajati, A., Boughton, P. and Ruys, A.J. (2018), "Modelling and optimization of polycaprolactone ultrafine-fibres electrospinning process using response surface methodology", Materials, 11(3), 1-23. https://doi.org/10.3390/ma11030441.   DOI
13 Banuskeviciute, A., Adomaviciute, E., Milasius, R. and Stanys, S. (2011), "Formation of thermoplastic polyurethane (TPU) nano/micro fibers by electrospinning process using electrode with tines", Mater. Sci., 17(3), 287-292. https://doi.org/10.5755/j01.ms.17.3.595.   DOI
14 Aydin, M.R. and Gundogdu, O. (2018), "Vibration analysis of honeycomb sandwich composites filled with polyurethane foam by Taguchi Method", Steel Compos. Struct., Int. J., 28(4), 461-470. https://doi.org/10.12989/SCS.2018.28.4.461.   DOI
15 Baji, A., Mai, Y.W., Wong, S.C., Abtahi, M. and Chen, P. (2010), "Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties", Compos. Sci. Technol., 70(5), 703-718. http://dx.doi.org/10.1016/j.compscitech.2010.01.010.   DOI
16 Ballarin, F.M., Caracciolo, P., Blotta, E., Ballarin, V. and Abraham, G. (2014), "Optimization of poly (L-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures", Mater. Sci. Eng. C, 42, 489-499. https://doi.org/10.1016/j.msec.2014.05.074.   DOI
17 Shahavi, M.H., Hosseini, M., Jahanshahi, M., Meyer, R.L. and Darzi, G.N. (2016), "Clove oil nanoemulsion as an effective antibacterial agent: Taguchi optimization method", Desalination Water Treat., 57(39), 18379-18390. https://doi.org/10.1080/19443994.2015.1092893.   DOI
18 Saligheh, O., Khajavi, R., Yazdanshenas, M. and Rashidi, A. (2015), "Fabrication and optimization of poly (vinyl alcohol)/zirconium acetate electrospun nanofibers using Taguchi experimental design", J. Macromol. Sci. Part B, 54(11), 1391-1403. https://doi.org/10.1080/00222348.2015.1085783.   DOI
19 Sayed, M.A., Dawood, O.M., Elsayed, A.H. and Daoush, W.R. (2017), "Application of Taguchi method in optimization of process parameters of ODS tungsten heavy alloys", Adv. Mater. Res., Int. J., 6(1), 79-91. https://doi.org/10.12989/amr.2017.6.1.079.   DOI
20 Sener, A.G., Altay, A.S. and Altay, F. (2011), "Effect of voltage on morphology of electrospun nanofibers", Proceedings of the Electrical and Electronics Engineering (ELECO): 7th International Conference on IEEE, Bursa, Turkey, January.
21 Tan, S., Inai, R., Kotaki, M. and Ramakrishna, S. (2005), "Systematic parameter study for ultra-fine fiber fabrication via electrospinning process", Polymer, 46(16), 6128-6134. https://doi.org/10.1016/j.polymer.2005.05.068.   DOI
22 Tarus, B., Fadel, N., Al-Oufy, A. and El-Messiry, M. (2016), "Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats", Alexandria Eng. J., 55(3), 2975-2984. https://doi.org/10.1016/j.aej.2016.04.025.   DOI
23 Tascan, M. (2014), "Optimization of process parameters of wetspun solid PVDF fibers for maximizing the tensile strength and applied force at break and minimizing the elongation at break using the Taguchi method", J. Eng. Fabr. Fibers, 9(1), 165-173. https://doi.org/10.1177/155892501400900119.   DOI
24 Christopherson, G.T., Song, H. and Mao, H.Q. (2009), "The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation", Biomaterials, 30(4), 556-564. https://doi.org/10.1016/j.biomaterials.2008.10.004.   DOI
25 Barnes, C.P., Sell, S.A., Boland, E.D., Simpson, D.G. and Bowlin, G.L. (2007), "Nanofiber technology: designing the next generation of tissue engineering scaffolds", Adv. Drug Deliver. Rev., 59(14), 1413-1433. https://doi.org/10.1016/j.addr.2007.04.022.   DOI
26 Bhattarai, R.S., Bachu, R.D., Boddu, S.H. and Bhaduri, S. (2019), "Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery", Pharmaceutics, 11(1), 5. https://doi.org/10.3390/pharmaceutics11010005.   DOI
27 Celep, G. and Dincer, K. (2017), "Optimization of parameters for electrospinning of polyacrylonitrile nanofibers by the Taguchi method", Int. Polym. Process, 32(4), 508-514. https://doi.org/10.3139/217.3411.   DOI
28 Ceylan, S. and Bolgen, N. (2016), "A review on three dimensional scaffolds for tumor engineering", Biomater. Biomech. Bioeng., Int. J., 3(3), 141-155. http://dx.doi.org/10.12989/bme.2016.3.3.141.   DOI
29 Chaudhari, S., Khedkar, S. and Borkar, N. (2011), "Optimization of process parameters using Taguchi approach with minimum quantity lubrication for turning", Int. J. Eng. Res. Appl., 1(4), 1268-1273.
30 Demir, M.M., Yilgor, I., Yilgor, E. and Erman, B. (2002), "Electrospinning of polyurethane fibers", Polymer, 43(11), 3303-3309. https://doi.org/10.1016/S0032-3861(02)00136-2.   DOI
31 Dong, Y., Bickford, T., Haroosh, H.J., Lau, K.T. and Takagi, H. (2013), "Multi-response analysis in the material characterisation of electrospun poly (lactic acid)/halloysite nanotube composite fibres based on Taguchi design of experiments: Fibre diameter, non-intercalation and nucleation effects", Appl. Phys. A, 112(3), 747-757. https://doi.org/10.1007/s00339-013-7789-x.   DOI
32 Xue, J., Wu, T., Dai, Y. and Xia, Y. (2019), "Electrospinning and electrospun nanofibers: methods, materials, and applications", Chem. Rev., 119(8), 5298-5415. https://doi.org/10.1021/acs.chemrev.8b00593.   DOI
33 Doustgani, A. (2016), "Optimization of mechanical and structural properties of PVA nanofibers", J. Ind. Text., 46(3), 901-913. https://doi.org/10.1177/1528083715601511.   DOI
34 Hotaling, N.A., Bharti, K., Kriel, H. and Simon, C.G. (2015), "Diameter J: A validated open source nanofiber diameter measurement tool", Biomaterials, 61, 327-338. https://doi.org/10.1016/j.biomaterials.2015.05.015.   DOI
35 Jia, L., Prabhakaran, M.P., Qin, X. and Ramakrishna, S. (2014), "Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers", J. Biomater. Appl., 29(3), 364-377. https://doi.org/10.1177/0885328214529002.   DOI
36 Jing, X., Mi, H.Y., Salick, M.R., Cordie, T.M., Peng, X.F. and Turng, L.S. (2015), "Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications", Mater. Sci. Eng. C, 49, 40-50. https://doi.org/10.1016/j.msec.2014.12.060.   DOI
37 Karakas, H., Sarac, A., Polat, T., Budak, E., Bayram, S., Dag, N. and Jahangiri, S. (2013), "Polyurethane nanofibers obtained by electrospinning process", Int. J. Biol. Biomol. Agr. Food Biotechnol. Eng., 7(3), 177-180. http://doi.org/10.5281/zenodo.1061611.   DOI
38 Tetteh, G., Khan, A., Delaine-Smith, R., Reilly, G. and Rehman, I. (2014), "Electrospun polyurethane/hydroxyapatite bioactive Scaffolds for bone tissue engineering: The role of solvent and hydroxyapatite particles", J. Mech. Behav. Biomed. Mater., 39, 95-110. https://doi.org/10.1016/j.jmbbm.2014.06.019.   DOI
39 Vigani, B., Rossi, S., Sandri, G., Bonferoni, M.C. and Ferrari, F. (2017), "Design and criteria of electrospun fibrous scaffolds for the treatment of spinal cord injury", Neural Regen. Res., 12(11), 1786-1790. https://doi.org/10.4103/1673-5374.219029.   DOI
40 Yanilmaz, M., Kalaoglu, F. and Karakas, H. (2012), "Study on optimising the morphology of electrospun polyurethane nanofibers", J. Text. Appar. Tekstil. Konfeksiyon, 22(3), 212-217.
41 Ye, K., Kuang, H., You, Z., Morsi, Y. and Mo, X. (2019), "Electrospun nanofibers for tissue engineering with drug loading and release", Pharmaceutics, 11(4), 182. https://doi.org/10.3390/pharmaceutics11040182.   DOI
42 Zhang, C., Yuan, X., Wu, L., Han, Y. and Sheng, J. (2005), "Study on morphology of electrospun poly (vinyl alcohol) mats", Eur. Polym. J., 41(3), 423-432. https://doi.org/10.1016/j.eurpolymj.2004.10.027.   DOI
43 Zhuo, H., Hu, J., Chen, S. and Yeung, L. (2008), "Preparation of polyurethane nanofibers by electrospinning", J. Appl. Polym. Sci., 109(1), 406-411. https://doi.org/10.5772/intechopen.69937.   DOI
44 Ethier, C.R. and Simmons, C.A. (2007), Introductory Biomechanics: From Cells to Organisms, Cambridge University Press, London, UK.
45 Drupitha, M.P., Das, B., Parameswaran, R., Dhara, S., Nando, G. B. and Naskar, K. (2018), "Hybrid electrospun fibers based on TPU-PDMS and spherical nanohydroxyapatite for bone tissue engineering", Mater. Today Commun., 16, 264-273. https://doi.org/10.1016/j.mtcomm.2018.06.013.   DOI
46 Dufresne, A. (2017), Nanocellulose: From Nature to High Performance Tailored Materials, Walter de Gruyter GmbH & CoKG, Berlin, Germany.
47 Elkasaby, M., Hegab, H.A., Mohany, A. and Rizvi, G.M. (2017), "Modeling and optimization of electrospinning of polyvinyl alcohol (PVA)", Adv. Polym. Technol., 37(6), 2114-2122. https://doi.org/10.1002/adv.21869.   DOI
48 Fallahiarezoudar, E., Ahmadipourroudposht, M., Idris, A. and Yusof, N.M. (2017), "Optimization and development of Maghemite (γ-Fe2O3) filled poly-L-lactic acid (PLLA)/thermoplastic polyurethane (TPU) electrospun nanofibers using Taguchi orthogonal array for tissue engineering heart valve", Mater. Sci. Eng. C, 76, 616-627. http://dx.doi.org/10.1016/j.msec.2017.03.120.   DOI
49 Hamed, A., Shehata, N. and Elosairy, M. (2017), "Investigation of conical spinneret in generating more dense and compact electrospun nanofibers", Polymers, 10(1), 12. https://doi.org/10.3390/polym10010012.   DOI
50 Horuz, T.I. and Belibagli, K.B. (2017), "Production of electrospun gelatin nanofibers: An optimization study by using Taguchi's methodology", Mater. Res. Exp., 4(1), 1-9. https://doi.org/10.1088/2053-1591/aa57ea.   DOI
51 Douglasc, M. (2009), Design and Analysis of Experiments, Wiley, London, UK.
52 Li, Z. and Wang, C. (2013b), One-dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers, Springer, Berlin, Germany.
53 Kucinska-Lipka, J., Gubanska, I., Janik, H. and Sienkiewicz, M. (2015), "Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system", Mater. Sci. Eng. C, 46, 166-176. https://doi.org/10.1016/j.msec.2014.10.027.   DOI
54 Kyzas, G. and Mitropoulos, A.C. (2018), Novel Nanomaterials: Synthesis and Applications, Intechopen, Croatia.
55 Li, Z. and Wang, C. (2013a), One-dimensional Nanostructures: Effects of Working Parameters on Electrospinning, Springer, Berlin, Germany.