• Title/Summary/Keyword: nano pre-open

Search Result 8, Processing Time 0.024 seconds

APPLICATIONS OF NANO TOPOLOGY VIA NANO OPERATIONS

  • Ibrahim, Hariwan Z.
    • The Pure and Applied Mathematics
    • /
    • v.28 no.3
    • /
    • pp.199-215
    • /
    • 2021
  • The purpose of this paper is to define and study some new classes of sets by using nano operation namely, ζ-nano regular open, ζ-nano open, ζ-nano α-open, ζ-nano pre-open, ζ-nano semi-open, ζ-nano b-open and ζ-nano β-open in nano topology. Some properties and the relationships between these sets and the related concepts are investigated. Also, we found the deciding factors for the most common disease fever.

Frequency and thermal buckling information of laminated composite doubly curved open nanoshell

  • Dai, Humin;Safarpour, Hamed
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • In the present computational approach, thermal buckling and frequency characteristics of a doubly curved laminated nanopanel with the aid of Two-Dimensional Generalized Differential Quadrature Method (2D-GDQM) and Nonlocal Strain Gradient Theory (NSGT) are investigated. Additionally, the temperature changes along the thickness direction nonlinearly. The novelty of the current study is in considering the effects of laminated composite and thermal in addition of size effect on frequency, thermal buckling, and dynamic deflections of the laminated nanopanel. The acquired numerical and analytical results are compared by each other to validate the results. The results demonstrate that some geometrical and physical parameters, have noticeable effects on the frequency and pre-thermal buckling behavior of the doubly curved open cylindrical laminated nanopanel. The favorable suggestion of this survey is that for designing the laminated nano-sized structure should pay special attention to size-dependent parameters because nonlocal and length scale parameters have an important role in the static and dynamic behaviors of the laminated nanopanel.

Open Tubular Molecular Imprinted Polymer Fabricated in Silica Capillary for the Chiral Recognition of Neutral Enantiomers in Capillary Electrochromatography

  • Yang, Song-Hee;Zaidi, Shabi Abbas;Cheong, Won-Jo;ALOthman, Zeid A.;ALMajid, Abdullah M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1664-1668
    • /
    • 2012
  • In this study, we have expanded the applicability of the pre-established generalized preparation protocol to MIPs with a neutral template. The ($4S,5R$hyl-5-phenyl-2-oxazolidinone MIP layer was formed inside a pretreated and silanized fused silica capillary, and its chiral separation performance was examined. Optimization of chiral separation was also carried out. This is the very first report of somewhat successful application of the generalized preparation protocol to a MIP with a genuine neutral template.

Comparison of Enantioselective CEC Separation of OT-MIP Capillary Columns with Templates of Various Camphor Derivatives Made by the Pre-established General Preparation Protocol

  • Zaidi, Shabi Abbas;Lee, Seung-Mi;Lee, Ju-Young;Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2934-2938
    • /
    • 2010
  • Some open tubular (OT) molecule imprinted polymer (MIP) silica capillary columns with templates of camphor derivatives such as 10-camphorsulfonic acid (10-CSA), 10-camphorsulfonamide (10-CS) and camphor-p-tosyl hydrazone (CTH) have been successfully prepared by the prior generalized preparation protocol. The three MIP thin layers of different templates showed quite different morphologies. The chiral selectivity of each MIP column for the template enantiomers was optimized by changing eluent composition and pH. The optimization conditions were found to be different for the three MIPs. This work suggests prospective successful extension of the generalized preparation protocol for OT-MIP silica capillary columns toward templates of a variety of chemical groups.

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.309-315
    • /
    • 2012
  • Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.

Improved Efficiency by Insertion of TiO2 Interfacial Layer in the Bilayer Solar Cells

  • Xie, Lin;Yoon, Soyeon;Kim, Kyungkon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.432.1-432.1
    • /
    • 2016
  • We demonstrated that the power conversion efficiency (PCE) of bilayer solar cell was significantly enhanced by inserting interfacial layer between the organic bilayer film and the Al electrode. Moreover, the water contact angle shows that the bilayer solar cells suffer from the undesirable surface component which limits the charge transport to the Al electrode. The AFM measurement has revealed that the pre- and post-thermal annealing treatments results in different morphologies of the interfacial layer which is critical for the higher PCE of the bilayer solar cells. Furthermore we have investigated the electrical properties of the bilayer solar cells and obtained insights into the detailed device mechanisms. The transient photovoltage measurements suggests that the significantly enhanced Voc is caused by reducing the recombination at the interface between the organic films and the Al electrode. By inserting the TiO2 layer between the bilayer film and Al electrode, the open circuit voltage (Voc) was increased from 0.37 to 0.66V. Consequently, the power conversion efficiency (PCE) of bilayer solar cells was significantly enhanced from 1.23% to 3.71%. As the results, the TiO2 interfacial layer can be used to form an ohmic contact layer, serveing as a blocking layer to prevent the penetration of the Al, and to reduce the recombination at the interface.

  • PDF

Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite

  • Bhagawati, Deepshikha;Thakur, Suman;Karak, Niranjan
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.15-29
    • /
    • 2016
  • A low cost environmentally benign surface coating binder is highly desirable in the field of material science. In this report, castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposites were fabricated to achieve the desired performance. The hyperbranched polyester resin was synthesized by a three-step one pot condensation reaction using monoglyceride of castor oil based carboxyl terminated pre-polymer and 2,2-bis (hydroxymethyl) propionic acid. Also, the bulk fly ash of paper industry waste was converted to hydrophilic nano fly ash by ultrasonication followed by transforming it to an organonano fly ash by the modification with bitumen. The synthesized polyester resin and its nanocomposites were characterized by different analytical and spectroscopic tools. The nanocomposite obtained in presence of 20 wt% styrene (with respect to polyester) was found to be more homogeneous and stable compared to nanocomposite without styrene. The performance in terms of tensile strength, impact resistance, scratch hardness, chemical resistance and thermal stability was found to be improved significantly after formation of nanocomposite compared to the pristine system after curing with bisphenol-A based epoxy and poly(amido amine). The overall results of transmission electron microscopic (TEM) analysis and performance showed good exfoliation of the nano fly ash in the polyester matrix. Thus the studied nanocomposites would open up a new avenue on development of low cost high performing surface coating materials.

Data Qualification of Optical Emission Spectroscopy Spectra in Resist/Nitride/Oxide Etch: Coupon vs. Whole Wafer Etching

  • Kang, Dong-Hyun;Pak, Soo-Kyung;Park, George O.;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.433-433
    • /
    • 2012
  • As the requirement in patterning geometry continuously shrinks down, the termination of etch process at the exact time became crucial for the success in nano patterning technology. By virtue of real-time optical emission spectroscopy (OES), etch end point detection (EPD) technique continuously develops; however, it also faced with difficulty in low open ratio etching, typically in self aligned contact (SAC) and one cylinder contact (OCS), because of very small amount of optical emission from by-product gas species in the bulk plasma glow discharge. In developing etching process, one may observe that coupon test is being performed. It consumes costs and time for preparing the patterned sample wafers every test in priority, so the coupon wafer test instead of the whole patterned wafer is beneficial for testing and developing etch process condition. We also can observe that etch open area is varied with the number of coupons on a dummy wafer. However, this can be a misleading in OES study. If the coupon wafer test are monitored using OES, we can conjecture the endpoint by experienced method, but considering by data, the materials for residual area by being etched open area are needed to consider. In this research, we compare and analysis the OES data for coupon wafer test results for monitoring about the conditions that the areas except the patterns on the coupon wafers for real-time process monitoring. In this research, we compared two cases, first one is etching the coupon wafers attached on the carrier wafer that is covered by the photoresist, and other case is etching the coupon wafers on the chuck. For comparing the emission intensity, we chose the four chemical species (SiF2, N2, CO, CN), and for comparing the etched profile, measured by scanning electron microscope (SEM). In addition, we adopted the Dynamic Time Warping (DTW) algorithm for analyzing the chose OES data patterns, and analysis the covariance and coefficient for statistical method. After the result, coupon wafers are over-etched for without carrier wafer groups, while with carrier wafer groups are under-etched. And the CN emission intensity has significant difference compare with OES raw data. Based on these results, it necessary to reasonable analysis of the OES data to adopt the pre-data processing and algorithms, and the result will influence the reliability for relation of coupon wafer test and whole wafer test.

  • PDF