Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.6.309

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams  

Yue, Xue-Zheng (i-Cube Group, ERI, School of Nano and Advanced Material Engineering, Gyeongsang National University)
Hur, Bo-Young (i-Cube Group, ERI, School of Nano and Advanced Material Engineering, Gyeongsang National University)
Publication Information
Korean Journal of Materials Research / v.22, no.6, 2012 , pp. 309-315 More about this Journal
Abstract
Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.
Keywords
Mg alloy; infiltration; open cell; metal foam;
Citations & Related Records

Times Cited By SCOPUS : 3
연도 인용수 순위
  • Reference
1 R. Gil, A. Jinnapat and A. R. Kennedy, Compos. Appl. Sci. Manuf., 43, 880 (2012).   DOI   ScienceOn
2 D. Carnelli, G. Pennati, T. Villa, L. Baglioni, B. Reimers and F. Migliavacca, Artif. Organs, 35, 74 (2011).   DOI   ScienceOn
3 M. P. Fernandez, in Proceedings of the 6th International Conference on Porous Metals and Metallic Foams; MetFoam 2009 (Bratislava, Slovakia, September 2009), P32.
4 N. Q. Zhao, B. Jiang, X. W. Du, J. J. Li, C. S. Shi and W. X. Zhao, Mater. Lett., 60, 1665 (2006).   DOI   ScienceOn
5 K. R. Ravi, R. M. Pillai, K. R. Amaranathan, B. C. Pai and M. Chakraborty, J. Alloy. Comp., 456, 201 (2008).   DOI   ScienceOn
6 K. Benedy and C. Joseph, Light Met. Age, 63, 36 (2005).
7 D. P. Yao, Master Thesis(in English), p. 4, Gyeongsang National University, Korea (2007).
8 E. W. Andrews and L. J. Gibson, Scripta Mater., 44, 1005 (2001).   DOI   ScienceOn
9 H. M. Sui, Master Thesis(in English), p. 9, Gyeongsang National University, Korea (2006).
10 M. X. Xu, Master Thesis(in Chinese), p. 60-65, Taiyuan University of Technology, China (2009).
11 D. -H. Yang, B. -Y. Hur and S. -R. Yang. J. Alloy. Comp., 461, 221 (2008).   DOI   ScienceOn
12 B. Y. Hur and X. Zhu, Mater. Sci. Forum, 439, 200 (2003).   DOI
13 B. Y. Hur, B. -K. Park, S. -Y. Kim and H. Bae, Mater. Sci. Forum, 486-487, 472 (2005).   DOI
14 S. Y. Kim, B. Y. Hur, C. K. Kwon, D. K. Ahn and S. H. Park, J. Kor. Inst. Met. & Mater., 40(8), 910 (2002).
15 M. V. Twigg and J. T. Richardson, Ind. Eng. Chem. Res., 46, 4166 (2007).   DOI   ScienceOn
16 D. Fino, G. Saracco and V. Specchia, Chem. Eng. Sci., 57, 4955 (2002).   DOI   ScienceOn
17 K. Raiber, P. Hammerschmid and D. Janke, ISIJ Int., 35, 380 (1995).   DOI
18 L. Tadrist, M. Miscevic, O. Rahli and F. Topin, Exp. Therm. Fluid. Sci., 28, 193 (2004).   DOI   ScienceOn
19 S. Langlois and F. Coeuret, J. Appl. Electrochem., 20, 749 (1990).   DOI
20 P. J. Elverum, J. L. Ellzey and D. Kovar, J. Mater. Sci., 40, 155 (2005).   DOI
21 P. D. Plessis, A. Montillet, J. Comiti and J. Legrand, Chem. Eng. Sci., 49, 3545 (1994).   DOI   ScienceOn
22 S. J. Kim and D. Kim, J. Heat Tran., 123, 527 (2001).   DOI   ScienceOn
23 K. Boomsma, D. Poulikakos and Y. Ventikos, Int. J. Heat Fluid Flow, 24, 825 (2003).   DOI   ScienceOn
24 J. T. Richardson, Y. Peng and D. Remue, Appl. Catal. Gen., 204, 19 (2000).   DOI   ScienceOn
25 L. Giani, G. Groppi and E. Tronconi, Ind. Eng. Chem. Res., 44, 4993 (2005).   DOI   ScienceOn