• Title/Summary/Keyword: nano porous

Search Result 431, Processing Time 0.03 seconds

AC and DC anodization on the electrochemical properties of SS304L: A comparison

  • Nur S. Azmi;Mohd N. Derman;Zuraidawani Che Daud
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.153-160
    • /
    • 2024
  • This study investigates the application of alternating current (AC) and direct current (DC) anodization techniques on stainless steel 304L (SS304L) in an ethylene glycol and ammonium fluoride (NH4F) electrolyte solution to produce a nano-porous oxide layer. With limited research on AC anodizing of stainless steel, this study focuses on comparing AC and DC anodization in terms of current density versus time response, phase analysis using X-ray diffraction (XRD), and corrosion rate determined by linear polarization. Both AC and DC anodization were performed for 60 minutes at 50 V in an electrolyte solution containing 0.5% NH4F and 3% H2O in ethylene glycol. The results show that AC anodization exhibited higher current density compared to DC anodization. XRD analysis revealed the presence of ferrite (α-Fe) and austenite (γ-Fe) phases in the as-received specimen, while both AC and DC anodized specimens exhibited only the γ-Fe phase. The corrosion rate of the AC-anodized specimen was measured at 0.00083 mm/year, lower than the corrosion rate of the DC-anodized specimen at 0.00197 mm/year. These findings indicate that AC anodization on stainless steel offers advantages in terms of higher current density, phase transformation, and lower corrosion rate compared to DC anodization. These results highlight the need for further investigation and exploration of AC anodization as a promising technique for enhancing the electrochemical properties of stainless steel.

In Situ-Forming Collagen/poly-γ-glutamic Acid Hydrogel System with Mesenchymal Stem Cells and Bone Morphogenetic Protein-2 for Bone Tissue Regeneration in a Mouse Calvarial Bone Defect Model

  • Sun-Hee Cho;Keun Koo Shin;Sun-Young Kim;Mi Young Cho;Doo-Byoung Oh;Yong Taik Lim
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.19
    • /
    • pp.1099-1111
    • /
    • 2022
  • Background: Bone marrow-derived mesenchymal stem cells (BMSCs) and bone morphogenetic protein-2 (BMP-2) have been studied for bone repair because they have regenerative potential to differentiate into osteoblasts. The development of injectable and in situ three-dimensional (3D) scaffolds to proliferate and differentiate BMSCs and deliver BMP-2 is a crucial technology in BMSC-based tissue engineering. Methods: The proliferation of mouse BMSCs (mBMSCs) in collagen/poly-γ-glutamic acid (Col/γ-PGA) hydrogel was evaluated using LIVE/DEAD and acridine orange and propidium iodide assays. In vitro osteogenic differentiation and the gene expression level of Col/γ-PGA(mBMSC/BMP-2) were assessed by alizarin red S staining and quantitative reverse-transcription polymerase chain reaction. The bone regeneration effect of Col/γ-PGA(mBMSC/BMP-2) was evaluated in a mouse calvarial bone defect model. The cranial bones of the mice were monitored by micro-computed tomography and histological analysis. Results: The developed Col/γ-PGA hydrogel showed low viscosity below ambient temperature, while it provided a high elastic modulus and viscous modulus at body temperature. After gelation, the Col/γ-PGA hydrogel showed a 3D and interconnected porous structure, which helped the effective proliferation of BMSCs with BMP-2. The Col/γ-PGA (mBMSC/BMP-2) expressed more osteogenic genes and showed effective orthotopic bone formation in a mouse model with a critical-sized bone defect in only 3-4 weeks. Conclusion: The Col/γ-PGA(mBMSC/BMP-2) hydrogel was suggested to be a promising platform by combining collagen as a major component of the extracellular matrix and γ-PGA as a viscosity reducer for easy handling at room temperature in BMSC-based bone tissue engineering scaffolds.

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

The Production of Protein-loaded Poly(lactide-co-glycolide) Microparticles using Supercritical Carbon Dioxide (초임계 PGSS 법을 이용한 Poly(lactide-co-glycolide)와 단백질의 마이크로복합체 제조에 관한 연구)

  • Song, Eun-Seok;Jung, Heon-Seop;Lee, Hanho;Kim, Jae-Duck;Kim, Hwayong;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.53-61
    • /
    • 2006
  • A PGSS (Particles from Gas Saturated Solutions) process designed to generate nano-particles using supercritical fluids has been conducted for the fabrication of Poly(lactide-co-glycolide) (PLGA) microparticles that encapsulate a protein drug. It is demonstrated that the polymer and the dry powder of a protein can be mixed under supercritical carbon dioxide conditions and that the protein component retains its biological activity. In this experiment, the mixture of polymer which is plasticized and dry powder protein was sprayed to form solid polymer that encapsulate the protein. It is found that supercritical fluid process give fine tuning of particle size and particle size distribution by simple manipulations of the process parameters. Porous particles were formed with irregular shape. Protein encapsulated in the polymer was found to have enzymatic activity without significant loss of its initial value.

  • PDF

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Peel strengths of the Composite Structure of Metal and Metal Oxide Laminate (Metal과 Metal Oxidefh 구성된 복합구조의 Peel Strength)

  • Shin, Hyeong-Won;Jung, Taek-Kyun;Lee, Hyo-Soo;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.13-16
    • /
    • 2013
  • A lot of various researches have been going on to use heat spreader for LED module. Nano porous aluminum anodic oxide (AAO) applied LED, which is produced from anodization, is easy and economically advantageous. Convensional LED module is consist of aluminum/adhesive/copper circuit. The polymer adhesive in this module is used as heat spreader. However the thermal emission of LED component is degraded because of low heat conductivity of polymer and also reliability of LED component is reduced. Therefore, AAO in this work was applied to heat spreader of LED module which has higher heat conductivity compare to polymer. Bonding strength between AAO and copper circuit was improved with Ti/Cu seed layer by copper sputtering process (DBC) before the bonding. And this copper circuit has been fabricated by electro plating method. Peel strength of AAO and copper circuit in this work showed range between 1.18~1.45 kgf/cm with anodizing process which is very suitable for high power LED application.

Progress in Composite Polymer Membrane for Application as Separator in Lithium Ion Battery (리튬 이온 전지의 분리막으로 사용하기 위한 복합 고분자 막의 동향)

  • Oh, Seok Hyeon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.228-241
    • /
    • 2020
  • Separators, which produces physical layer between a cathode and anode, are getting enormous attention as the quality of the separator determines the performance of lithium ion batteries (LIBs). Porous membranes based on polyethylene (PE) and polypropylene (PP) are generally utilized as the separator of LIBs because of their high electrochemical stability and suitable mechanical strength. However, low thermal resistance and wettability of PE and PP membranes limited the potential of LIBs. Operating at the temperature exceeding the melting point of membranes, the separators change their structures which lead to short circuit of LIBs. Low wettability of the separators corresponds to low ionic conductivity which increases the cell resistance. To overcome these weaknesses of PE and PP separators, different types of separator were prepared by co-electrospinning, applying coating layer, forming core shell around membrane, and papermaking method. The synthesized separator greatly enhanced the heat resistance and wettability of separator and mechanical properties like flexibility and tensile strength. In this review different type of polymer membrane used as separator in lithium ion battery are discussed.

Biological effects of a porcine-derived collagen membrane on intrabony defects

  • Lee, Chang-Kyun;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Rhyu, In-Chul;Ku, Young;Chung, Chong-Pyoung;Park, Yoon-Jeong;Lee, Jue-Yeon
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.5
    • /
    • pp.232-238
    • /
    • 2010
  • Purpose: To prolong the degradation time of collagen membranes, various cross-linking techniques have been developed. For cross-linking, chemicals such as formaldehyde and glutaraldehyde are added to collagen membranes, but these chemicals could adversely affect surrounding tissues. The aim of this study is to evaluate the ability of porous non-chemical cross-linking porcine-derived collagen nanofibrous membrane to enhance bone and associated tissue regeneration in one-wall intrabony defects in beagle dogs. Methods: The second and third mandibular premolars and the first molars of 2 adult beagles were extracted bilaterally and the extraction sites were allowed to heal for 10 weeks. One-wall intrabony defects were prepared bilaterally on the mesial and distal side of the fourth mandibular premolars. Among eight defects, four defects were not covered with membrane as controls and the other four defects were covered with membrane as the experimental group. The animals were sacrificed 10 weeks after surgery. Results: Wound healing was generally uneventful. For all parameters evaluating bone regeneration, the experimental group showed significantly superior results compared to the control. In new bone height (NBh), the experimental group exhibited a greater mean value than the control ($3.04{\pm}0.23\;mm/1.57{\pm}0.59$, P=0.003). Also, in new bone area (NBa) and new bone volume (NBv), the experimental group showed superior results compared to the control (NBa, $34.48{\pm}10.21%$ vs. $5.09{\pm}5.76%$, P=0.014; and NBv, $28.04{\pm}12.96$ vs. $1.55{\pm}0.57$, P=0.041). On the other hand, for parameters evaluating periodontal tissue regeneration, including junctional epithelium migration and new cementum height, there were no statistically significant differences between two groups. Conclusions: Within the limitations of this study, this collagen membrane enhanced bone regeneration at one-wall intrabony defects. On the other hand, no influence of this membrane on periodontal tissue regeneration could be ascertained in this study.

Control of Bowing in Free-standing GaN Substrate by Using Selective Etching of N-polar Face (N-polar면의 선택적 에칭 방법을 통한 Free-standing GaN 기판의 Bowing 제어)

  • Gim, Jinwon;Son, Hoki;Lim, Tea-Young;Lee, Mijai;Kim, Jin-Ho;Lee, Young Jin;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Hae-Yong;Yoon, Dae-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.30-34
    • /
    • 2016
  • In this paper, we report that selective etching on N-polar face by EC (electro-chemical)-etching effect on the reduction of bowing and strain of FS (free-standing)-GaN substrates. We applied the EC-etching to concave and convex type of FS-GaN substrates. After the EC-etching for FS-GaN, nano porous structure was formed on N-polar face of concave and convex type of FS-GaN. Consequently, the bowing in the convex type of FS-GaN substrate was decreased but the bowing in the concave type of FS-GaN substrate was increased. Furthermore, the FWHM (full width at half maximum) of (1 0 2) reflection for the convex type of FS-GaN was significantly decreased from 601 to 259 arcsec. In the case, we confirmed that the EC-etching method was very effective to reduce the bowing in the convex type of FS-GaN and the compressive stress in N-polar face of convex type of FS-GaN was fully released by Raman measurement.

Improving the Cycle Performance of Li Metal Secondary Batteries Using Three-Dimensional Porous Ag/VGCF-Coated Separators (3D 다공성 구조의 Ag-VGCF 코팅 분리막을 이용한 리튬금속 이차전지 수명향상)

  • Beom-Hui Lee;Dong-Wan Ham;Ssendagire Kennedy;Jeong-Tae Kim;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.3
    • /
    • pp.88-96
    • /
    • 2024
  • Lithium metal has garnered attention as a promising anode active material thanks to its high specific capacity, energy density, and the lowest reduction potential. However, the formation of dendrites, dendritic crystals that arise during the charge and discharge process, has posed safety and lifetime stability challenges. To resolve this, our study has introduced a novel separator design. This separator features a composite coating of vapor-grown carbon fiber, a conductive material in nanofibers, and silver. We have meticulously studied the impact of this innovative separator on the electrochemical properties of the lithium metal anode, unveiling promising results. To confirm the synergistic effect of VGCF and Ag, a separator with no surface treatment and a separator with only VGCF coated on one side were prepared and compared with the Ag-VGCF-separator. In the case of the bare separator, the Li metal surface is covered with dendrites during the initial charge and discharge process. In contrast, both the VGCF-separator and the Ag-VGCF-separator show Li precipitation inside the conductive coating layer coated on the separator surface. Additionally, the Ag-VGCF-separator showed a more uniform precipitate shape than the VGCF-separator. As a result, the Ag-VGCF-separators show improved electrochemical properties compared to the bare separators and the VGCF-separators.