• Title/Summary/Keyword: nano composites

Search Result 644, Processing Time 0.03 seconds

Microstructure and Mechanical Properties of 3vol%CNT Reinforced Cu Matrix Composite Fabricated by a Powder in Sheath Rolling Method (분말시스압연법에 의해 제조된 3vol%CNT 강화 Cu기 복합재료의 미세조직 및 기계적 성질)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.149-154
    • /
    • 2020
  • A powder-in-sheath rolling method is applied to the fabrication of a carbon nano tube (CNT) reinforced copper composite. A copper tube with outer diameter of 30 mm and wall thickness of 2 mm is used as sheath material. A mixture of pure copper powder and CNTs with a volume content of 3 % is filled in a tube by tap filling and then processed to an 93.3 % reduction using multi-pass rolling after heating for 0.5 h at 400 ℃. The specimen is then sintered for 1h at 500 ℃. The relative density of the 3 vol%CNT/Cu composite fabricated using powder in sheath rolling is 98 %, while that of the Cu powder compact is 99 %. The microstructure is somewhat heterogeneous in width direction in the composite, but is relatively homogeneous in the Cu powder compact. The hardness distribution is also ununiform in the width direction for the composite. The average hardness of the composites is higher by 8Hv than that of Cu powder compact. The tensile strength of the composite is 280 MPa, which is 20 MPa higher than that of the Cu powder compact. It is concluded that the powder in sheath rolling method is an effective process for fabrication of sound CNT reinforced Cu matrix composites.

Low Temperature Growth of Single-walled Carbon Nanotube Forest

  • Lee, Il-Ha;Im, Ji-Woon;Kim, Un-Jeong;Bae, Eun-Ju;Kim, Kyoung-Kook;Lee, Eun-Hong;Lee, Young-Hee;Hong, Seung-Hun;Min, Yo-Sep
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2819-2822
    • /
    • 2010
  • Forest of single-walled carbon nanotubes (SWNTs) was grown at $450^{\circ}C$ by water-plasma chemical vapor deposition using ultrathin iron on alumina supporting film. The growth rate of the SWNT forest is ${\sim}0.9\;{\mu}m/min$, and the diameters of nanotubes are mainly in a range of 3.0 ~ 3.5 nm. The low intensity ratio of D- to G-band ($I_D/I_G$ ~ 0.098) in Raman spectra indicates that our SWNT forest grown at $450^{\circ}C$ is fairly pure and crystalline. This low temperature growth of SWNT forest may enable variable applications requiring the vertically-aligned nanotubes to obtain large surface area.

Synthesis and Characteristic of Ni/VSZ Cermet for High Temperature Electrolysis Prepared by Mechanical Alloying Method (Mechanical Alloying Method로 제조된 고온수전해용 Ni/YSZ cermet의 제조 및 특성)

  • Chae, Ui-Seok;Hong, Hyun-Sean;Choo, Soo-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2005
  • Ni/YSZ ($Y_2O_3$-stabilized $ZrO_2$) composite powder for a cathode material in high temperature electrolysis(HTE) was synthesized by a mechanical alloying method with Ni and YSZ powder. Microstructure of the composite and cell thickness for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. Employing the composite material, furthermore, the unit cell for HTE has been studied to evolve hydrogen from water. XRD patterns showed that the composites after wet mechanical alloying were composed of respective nano-sized crystalline Ni and YSZ. While ethanol as additive for mechanical alloying increased to $20\;{\mu}m$ of average particle size of the composites, alpha-terpineol effectively decreased to sub-micro size of that. This study has been found out the evolution of hydrogen by HTE reaction employing the fabricated cathode material, showing 1.4 ml/min of $H_2$ generation rate as increasing $20\;{\mu}m$ of cathode thickness.

Effects of Hot Pressing Condition on the Properties of SiCf/SiC Composites (SiCf/SiC 복합체의 특성에 미치는 열간가압소결 조건의 영향)

  • Noviyanto, Alfian;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.335-341
    • /
    • 2011
  • Continuous SiC fiber-reinforced SiC-matrix composites ($SiC_f$/SiC) had been fabricated by electrophoretic infiltration combined with ultrasonication. Nano-sized ${\beta}$-SiC added with 12 wt% of $Al_2O_3-Y_2O_3$ additive and Tyranno$^{TM}$-SA3 fabric were used as a matrix phase and fiber reinforcement, respectively. After hot pressing at 5 different conditions, the density, microstructure and mechanical properties of $SiC_f$/SiC were characterized. Hot pressing at relatively severe conditions, such as $1750^{\circ}C$ for 1 and 2 h, resulted in a brittle fracture behavior due to the strong fiber-matrix interface in spite of their high flexural strength. On the other hand, toughened $SiC_f$/SiC composite could be achieved by hot pressing at milder condition because of the formation of weak interface in spite of the decreased flexural strength. These results proposed the importance of weak fiber-matrix interface in the fabrication of ductile $SiC_f$/SiC composite.

Use of Red Algae Fiber as Reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.1
    • /
    • pp.62-67
    • /
    • 2008
  • Biocomposite was fabricated with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, mostly natural cellulosic fibers on land have been used as reinforcement for biocomposite. The present study focused on investigating the fabrication and the characterization of biocomposite reinforced with red algae fibers from the sea. The bleached red algae fiber (BRAF) showed very similar crystallinity to the wood cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS (polybuthylenesuccinate) matrix are markedly improved by reinforcing with the BRAF. These results indicate that red algae fiber can be used as an excellent reinforcement of biocomposites, which are sometimes called as "green-composites" or "eco-composites".

Hydrogenation Properties of MgH2-CaO Composites Synthesized by Hydrogen-Induced Mechanical Alloying

  • Kim, Min Gyeom;Han, Jeong-Heum;Lee, Young-Hwan;Son, Jong-Tae;Hong, Tae Whan
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.829-834
    • /
    • 2018
  • Although magnesium-based alloys are attractive materials for hydrogen storage applications, their activation properties, hydrogenation/dehydrogenation kinetics, thermodynamic equilibrium parameters, and degradation characteristics must be improved for practical applications. Further, magnesium poses several risks, including explosion hazard, environmental pollution, insufficient formability, and industrial damage. To overcome these problems, CaO-added Mg alloys, also called Eco-Mg (environment-conscious Mg) alloys, have been developed. In this study, $Eco-MgH_x$ composites were fabricated from Mg-CaO chips by hydrogen-induced mechanical alloying in a high-pressure atmosphere. The balls-to-chips mass ratio (BCR) was varied between a low and high value. The particles obtained were characterized by X-ray diffraction (XRD), and the absorbed hydrogen was quantified by thermogravimetric analysis. The XRD results revealed that the $MgH_2$ peaks broadened for the high BCR. Further, PSA results revealed particles size were decreased from $52{\mu}m$ to $15{\mu}m$.

Soft Robots Based on Magnetic Actuator (자성 액추에이터 기반의 소프트 로봇)

  • Nor, Gyu-Lyeong;Choi, Moon Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.401-415
    • /
    • 2021
  • Soft robots are promising devices for applications in drug delivery, sensing, and manufacturing. Traditional hard robotics are manufactured with rigid materials and their degrees of motion are constrained by the orientation of the joints. In contrast to rigid counterpart, soft robotics, employing soft and stretchable materials that easily deforms in shape, can realize complex motions (i.e., locomotion, swimming, and grappling) with a simple structure, and easily adapt to dynamic environment. Among them, the magnetic actuators exhibit unique characteristics such as rapid and accurate motion control, biocompatibility, and facile remote controllability, which make them promising candidates for the next-generation soft robots. Especially, the magnetic actuators instantly response to the stimuli, and show no-hysteresis during the recovery process, essential for continuous motion control. Here, we present the state-of-the-art fabrication process of magnetically controllable nano-/micro-composites, magnetically aligning process of the composites, and 1-dimensional/multi-dimensional multimodal motion control for the nextgeneration soft actuators.

Rapid Sintering of Nanocrystalline (W,Ti)C-Graphene Composites (나노구조 (W,Ti)C-Graphene 복합재료 급속소결)

  • Kim, Seong-Eun;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.854-860
    • /
    • 2018
  • In spite of the many attractive properties of (W,Ti)C, its low fracture toughness limits its wide application. To improve the fracture toughness generally a second phase is added to fabricate a nanostructured composite. In this regard, graphene was considered as the reinforcing agent of (W,Ti)C. (W,Ti)C-graphene composites that were sintered within 2 min using pulsed current activated heating under a pressure of 80 MPa. The rapid consolidation method allowed retention of the nano-scale microstructure by blocking the grain growth. The effect of graphene on the hardness and microstructure of the (W,Ti)C-graphene composite was studied using a Vickers hardness tester and FE-SEM. The grain size of (W,Ti)C was reduced remarkably by the addition of graphene. Furthermore, the hardness decreased and the fracture toughness improved with the addition of graphene.

Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions

  • Fan, Linyuan;Kong, Degang;Song, Jun;Moradi, Zohre;Safa, Maryam;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.29-45
    • /
    • 2022
  • The optimization for dynamic response associated with a cylindrical shell which is made of laminated composites embedded in a piezoelectric layer which is subjected to temperature rises and is resting on an elastic foundation is investigated for the first time. The first shear order theory (FSDT) is utilized in order to obtain the strain relations of the shell. Then, using the energy method, the equations of motions as well as boundary condition of the problem are attained. The formulation of this study together with the solution procedure which is a numerical solution method, differential quadrature method (DQM) is validated using other researches. This paper presents a thorough study on the parameters which impacts the vibration frequency of the laminated shell. The results of this paper shows that any type of laminated composite shell can reduce the vibration frequency providing that the angle related to layer are higher than 85 degrees. Also, in order to reduce the effect of temperature rises, the laminated composites instead of orthotropic one can be used.

Fabrication of barium titanate-bismuth ferrite fibers using electrospinning

  • Baji, Avinash;Abtahi, Mojtaba
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.183-192
    • /
    • 2013
  • One-dimensional multiferroic nanostructured composites have drawn increasing interest as they show tremendous potential for multifunctional devices and applications. Herein, we report the synthesis, structural and dielectric characterization of barium titanate ($BaTiO_3$)-bismuth ferrite ($BiFeO_3$) composite fibers that were obtained using a novel sol-gel based electrospinning technique. The microstructure of the fibers was investigated using scanning electron microscopy and transmission electron microscopy. The fibers had an average diameter of 120 nm and were composed of nanoparticles. X-ray diffraction (XRD) study of the composite fibers demonstrated that the fibers are composed of perovskite cubic $BaTiO_3$-$BiFeO_3$ crystallites. The magnetic hysteresis loops of the resultant fibers demonstrated that the fibers were ferromagnetic with magnetic coercivity of 1500 Oe and saturation magnetization of 1.55 emu/g at room temperature (300 K). Additionally, the dielectric response of the composite fibers was characterized as a function of frequency. Their dielectric permittivity was found to be 140 and their dielectric loss was low in the frequency range from 1000 Hz to $10^7$ Hz.