DOI QR코드

DOI QR Code

Hydrogenation Properties of MgH2-CaO Composites Synthesized by Hydrogen-Induced Mechanical Alloying

  • Kim, Min Gyeom (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Han, Jeong-Heum (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Lee, Young-Hwan (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Son, Jong-Tae (Department of Nano Polymer Science & Engineering, Korea National University of Transportation) ;
  • Hong, Tae Whan (Department of Materials Science and Engineering, Korea National University of Transportation)
  • Received : 2018.08.16
  • Accepted : 2018.10.02
  • Published : 2018.11.05

Abstract

Although magnesium-based alloys are attractive materials for hydrogen storage applications, their activation properties, hydrogenation/dehydrogenation kinetics, thermodynamic equilibrium parameters, and degradation characteristics must be improved for practical applications. Further, magnesium poses several risks, including explosion hazard, environmental pollution, insufficient formability, and industrial damage. To overcome these problems, CaO-added Mg alloys, also called Eco-Mg (environment-conscious Mg) alloys, have been developed. In this study, $Eco-MgH_x$ composites were fabricated from Mg-CaO chips by hydrogen-induced mechanical alloying in a high-pressure atmosphere. The balls-to-chips mass ratio (BCR) was varied between a low and high value. The particles obtained were characterized by X-ray diffraction (XRD), and the absorbed hydrogen was quantified by thermogravimetric analysis. The XRD results revealed that the $MgH_2$ peaks broadened for the high BCR. Further, PSA results revealed particles size were decreased from $52{\mu}m$ to $15{\mu}m$.

Keywords

Acknowledgement

Supported by : Ministry of Trade program on Industry & Energy

References

  1. J.-K. Lee and S. K. Kim, Mater. Trans. 52, 1483 (2011). https://doi.org/10.2320/matertrans.M2010397
  2. J.-I. Lee, K.-I. Kim, S.-W. Yoo, Y.-G. Lee, W.-G. Kim, M.-W. Jung, and T.-W. Hong, Mater. Sci. Forum. 695, 259 (2011). https://doi.org/10.4028/www.scientific.net/MSF.695.259
  3. M. Calizzi, D. Chericoni, L. H. Jepsen, T. R. Jensen, and L. Pasquini, Int. J. Hydrog. Energy 41, 14447 (2016) https://doi.org/10.1016/j.ijhydene.2016.03.071
  4. R. Floriano, S. Deledda, B. C. Hauback, D. R. Leiva, and W. J. Botta, Int. J. Hydrog. Energy 42, 6810 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.117
  5. G. Liang and R. Schulz, Mater. Trans. 42, 1593 (2011).
  6. Hanada, Nobuko, E. Jirotoshi, T. Ichikawa, E. Akiba, and J. Fuji, J. Alloy. Compd. 450, 395 (2008). https://doi.org/10.1016/j.jallcom.2006.10.128
  7. G. Liang, J. Jout, S. Boily, A. Van Neste, and R. Schulz, J. Alloy. Compd. 292, 247 (1999). https://doi.org/10.1016/S0925-8388(99)00442-9
  8. L. Baum, M. Meyer, and L.-Z. Mendoza, Physica B 89, 189 (2007).
  9. A. R. Yavari, J.F.R. de Castro, G. Vaughan, and G. Jeunen, J. Alloy. Compd. 353, 246 (2003). https://doi.org/10.1016/S0925-8388(02)01199-4
  10. B. Gagik, T. Klassen, and R. Bormann, Scripta Mater. 49, 213 (2003). https://doi.org/10.1016/S1359-6462(03)00259-8
  11. V. V. Bhat, A. Rougier, L. Aymard, G. A. Nazri, and J.-M. Tarascon, J. Alloy. Compd. 460, 507 (2008). https://doi.org/10.1016/j.jallcom.2007.05.084
  12. A. R. Yavari, A. LeMoulec, F. R. de Castro, S. Deledda, O. Friedrichs, W. J. Botta, G. Vaughan, T. Klassen, A. Fernandez, and A. Kvick, Scripta Mater. 52, 719 (2005). https://doi.org/10.1016/j.scriptamat.2004.12.020
  13. R. Floriano, D. R. Leiva, S. Deledda, B. C. Hauback, and W. J. Botta, Int. J. Hydrogen Energ. 38, 16193 (2013). https://doi.org/10.1016/j.ijhydene.2013.10.029
  14. D. R. Leiva, T. T. Ishikawa, S. Miraglia, D. Fruchart, and W. J. Botta, Sol. St. Phen. 194, 232 (2013).
  15. R. Schmid-Fetzer and J. Grobner, Adv. Eng. Mater. 3, 947 (2001). https://doi.org/10.1002/1527-2648(200112)3:12<947::AID-ADEM947>3.0.CO;2-P
  16. W. Ha and Y. J. Kim, J. Alloy. Compd. 422, 208 (2006). https://doi.org/10.1016/j.jallcom.2005.12.003
  17. B. S. You, M. H. Kim, W. W. Park, and I. S. Chung, J. Kor. Inst. Met. & Mater. 39, 446 (2001).
  18. S. K. Kim, J. K. Lee, H. Cho, H. H. Jo, W. Ha, and Y. J. Kim, Proc. Magnesium Technology 285 (2005).
  19. J. K. Lee, Y. Y. Yoon, and S. K. Kim, Proc. Magnesium Technology 185 (2006).
  20. S. K. Kim, Proc. Magnesium Technology 517 (2006).
  21. S. H. Ha, J. K. Lee, H. H. Jo, S. B. Jung, and S. K. Kim, Rare Metals 25, 150 (2006).
  22. K.-I. Kim and T.-W. Hong, Met. Mater. Int. 17, 1001 (2011). https://doi.org/10.1007/s12540-011-6019-3
  23. Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, C. Lukey, and H. K. Liu, J. Alloy. Compd. 422, 299 (2006). https://doi.org/10.1016/j.jallcom.2005.11.074