DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of 3vol%CNT Reinforced Cu Matrix Composite Fabricated by a Powder in Sheath Rolling Method

분말시스압연법에 의해 제조된 3vol%CNT 강화 Cu기 복합재료의 미세조직 및 기계적 성질

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 이성희 (국립목포대학교 신소재공학과)
  • Received : 2020.02.26
  • Accepted : 2020.03.13
  • Published : 2020.03.27

Abstract

A powder-in-sheath rolling method is applied to the fabrication of a carbon nano tube (CNT) reinforced copper composite. A copper tube with outer diameter of 30 mm and wall thickness of 2 mm is used as sheath material. A mixture of pure copper powder and CNTs with a volume content of 3 % is filled in a tube by tap filling and then processed to an 93.3 % reduction using multi-pass rolling after heating for 0.5 h at 400 ℃. The specimen is then sintered for 1h at 500 ℃. The relative density of the 3 vol%CNT/Cu composite fabricated using powder in sheath rolling is 98 %, while that of the Cu powder compact is 99 %. The microstructure is somewhat heterogeneous in width direction in the composite, but is relatively homogeneous in the Cu powder compact. The hardness distribution is also ununiform in the width direction for the composite. The average hardness of the composites is higher by 8Hv than that of Cu powder compact. The tensile strength of the composite is 280 MPa, which is 20 MPa higher than that of the Cu powder compact. It is concluded that the powder in sheath rolling method is an effective process for fabrication of sound CNT reinforced Cu matrix composites.

Keywords

References

  1. S. H. Joo and H. S. Kim, Trans. Mater. Process., 19, 423 (2010). https://doi.org/10.5228/KSTP.2010.19.7.423
  2. J. K. Lim, S. Y. Choi, K. H. Choe, S. S. Kim and G. S. Cho, Korean J. Met. Mater., 51, 385 (2013). https://doi.org/10.3365/kjmm.2013.51.5.385
  3. Y. Genma, Y. Tsunekawa, M. Okumiya and N. Mohri, Mater. Trans., 38, 232 (1997). https://doi.org/10.2320/matertrans1989.38.232
  4. K. Ohori, H. Watanabe and Y. Takeuchi, Mater. Sci. Technol., 3, 57 (1987). https://doi.org/10.1179/026708387790123061
  5. N. C. Kothari, Powder Metall. Int., 18, 321 (1986).
  6. S. H. Hong and K. H. Chung, Mater. Sci. Eng., A194, 165 (1995).
  7. W. F. Wang, Powder Metall., 38, 289 (1995). https://doi.org/10.1179/pom.1995.38.4.289
  8. S. H. Lee and C. H. Lee, J. Korean Powder Metall. Inst., 10, 103 (2003). https://doi.org/10.4150/KPMI.2003.10.2.103
  9. S. H. Lee and C. H. Lee, J. Korean Powder Metall. Inst., 11, 259 (2004). https://doi.org/10.4150/KPMI.2004.11.3.259
  10. D. M. Hong, W. J. Kim and S. H. Lee, Korean J. Mater. Res., 23, 607 (2013). https://doi.org/10.3740/MRSK.2013.23.11.607
  11. S. H. Lee, Korean J. Mater. Res., 21, 343 (2014).