• Title/Summary/Keyword: nano chitosan

Search Result 64, Processing Time 0.032 seconds

Dietary chitosan enhances hepatic CYP7A1 activity and reduces plasma and liver cholesterol concentrations in diet-induced hypercholesterolemia in rats

  • Moon, Min-Sun;Lee, Mak-Soon;Kim, Chong-Tai;Kim, Yang-Ha
    • Nutrition Research and Practice
    • /
    • v.1 no.3
    • /
    • pp.175-179
    • /
    • 2007
  • The present study was performed to elucidate the hypocholesterolemic action of chitosan on the diet-induced hypercholesterolemia in rats. Male Sprague-Dawley rats (n=24) were fed with chitosan-free diet (Control), diets containing 2% or 5% chitosan for 4 weeks. Hypercholesterolemia was induced by adding 1% cholesterol and 0.5% cholic acid to all diets. Body weight gain and food intake of rats did not differ among the groups. The chitosan treated groups showed significant improvement in the plasma concentration of total cholesterol and LDL-cholesterol compared to the control group (p<0.05). Also, the chitosan treated groups decreased the liver concentration of total lipid and total cholesterol compared to the control group (p<0.05). The activity of hepatic cholesterol $7{\alpha}-hydroxylase$ (CYP7A1), the rate-limiting enzyme in the conversion of cholesterol to bile acids, was increased by 123% and 165% for the 2% or 5% chitosan diets, respectively. These findings suggest that enhancement of hepatic CYP7A1 activity may be a mechanism, which can partially account for the hypocholesterolemic effect of dietary chitosan in cholesterol metabolism.

DNA Condensation and Delivery in 293 Cells Using Low Molecular Weight Chitosan/gene Nano-complex (저분자량 키토산/유전자 나노콤플렉스 제조 및 이를 이용한 293 세포로의 전달)

  • Pang, Shi-Won;Jang, Yangsoo;Kim, Jung-Hyun;Kim, Woo-Sik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.313-317
    • /
    • 2005
  • Synthetic gene carriers such as poly-cationic polymers easily form complexes with plasmid DNA which contains negative charge. Chitosan is a polysaccharide that demonstrates much potential as a gene delivery system. The ability of depolymerized chitosan to condense DNA was determined using electrophoresis. Dynamic laser scattering and scanning electron microscopy were used to examine the size and the morphology of the chitosan/DNA complex. Parameters such as chitosan molecular weight and charge density influenced the complex size and the DNA amount condensed with chitosan. The cell viabilities in the presence of chitosan ranged between 84-108% of the control in all experiments. Gene expression efficacy using chitosan/DNA complex was enhanced in 293 cells relative to that using naked DNA, although it was lower than that using lipofecamine. Transfection efficacy using low molecular weight chitosan (Mw=8,517) was higher than those of the control and the other chitosan (MW=4,078). The low molecular weight chitosan (MW=8,517) with a high charge density (18.32 mV) fulfilled the requirements for a suitable model gene delivery system with respect to the condensing ability of DNA, complex formation, and transfection efficacy.

Preparation and Characterization of Biopolymer-Based Nanocomposite Films: Chitosan-Based Nanocomposite Films with Antimicrobial Activity

  • Rhim, Jong-Whan
    • 한국포장학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.54-73
    • /
    • 2006
  • Four different types of chitosan-based nanocomposite films were prepared using a solvent casting method by incorporating with four types of nanoparticles, i.e., an unmodified montmorillonite (Na-MMT), an organically modified montmorillonite (Cloisite 30B), a Nano-silver, and a Ag-zeolite (Ag-Ion). X-ray diffraction patterns of the nanocomposite films indicated that a certain degree of intercalation was formed in the nanocomposite films, with the highest intercalation in the Na-MMT-incorporated films followed by films with Cloisite 30B and Ag-Ion. SEM micrographs showed that in all the nanocomposite films, except the Nanosilver-incorporated one, nanoparticles were dispersed homogeneously throughout the chitosan polymer matrix. Consequently, mechanical and barrier properties of chitosan films were affected through intercalation of nanoparticles, i.e., tensile strength (TS) increased by 7-16%, while water vapor permeability (WVP) decreased by 25-30% depending on the nanoparticle material tested. In addition, chitosan-based nanocomposite films, especially silver-containing ones, showed a promising range of antimicrobial activity.

  • PDF

Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III)

  • Galhoum, Ahmed A.;Mahfouz, Mohammad G.;Atia, Asem A.;Gomaa, Nabawia A.;Abdel-Rehem, Sayed T.;Vincent, Thierry;Guibal, Eric
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Magnetic nano-based sorbents have been synthesized for the recovery of two rare earth elements (REE: Nd(III) and Yb(III)). The magnetic nano-based particles are synthesized by a one-pot hydrothermal procedure involving co-precipitation under thermal conditions of Fe(III) and Fe(II) salts in the presence of chitosan. The composite magnetic/chitosan material is crosslinked with epichlorohydrin and modified by grafting alanine and serine amine-acids. These materials are tested for the binding of Nd(III) (light REE) and Yb(III) (heavy REE) through the study of pH effect, sorption isotherms, uptake kinetics, metal desorption and sorbent recycling. Sorption isotherms are well fitted by the Langmuir equation: the maximum sorption capacities range between 9 and 18 mg REE $g^{-1}$ (at pH 5). The sorption mechanism is endothermic (positive value of ${\Delta}H^{\circ}$) and contributes to increase the randomness of the system (positive value of ${\Delta}S^{\circ}$). The fast uptake kinetics can be described by the pseudo-second order rate equation: the equilibrium is reached within 4 hours of contact. The sub-micron size of sorbent particles strongly reduces the contribution of resistance to intraparticle diffusion in the control of uptake kinetics. Metal desorption using acidified thiourea solutions allows maintaining sorption efficiency for at least four successive cycles with limited loss in sorption capacity.

Preparation and Characterization of Self-aggregated Nanoparticles of Chitosan-Lipoic Acid Conjugate (키토산-리포산 자기 조립체의 제조 및 특성)

  • Park, Eun-Ju;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.544-548
    • /
    • 2008
  • The objective of this study is to obtain the anti-oxidant nanoparticles based on biocompatible polymers. It was chosen to conjugate with chitosan as the biodegradable polymer and lipoic acid as the hydrophobic anti-oxidant. Lipoic acid helps the regeneration of exogenous and endogenous anti-oxidants vitamin as well as glutathione and hence acts as antioxidant indirectly. Chitosan was prepared from chitin which was deacetylated under alkali solution for the various reaction time. Lipoic acid-chitosan complex was confirmed by $^1H$-NMR. The critical aggregation concentration was measured using pyrene and the values were about $5{\times}10^{-3}$ g/L. The particle shapes and sizes of the chitosan-lipoic acid nano-particles were about 135 nm that measured by DLS and TEM.

Development of Chitosan Coated Solid Lipid Nano-particles Containing 7-Dehydrocholesterol (7-디하이드로콜레스테롤을 함유한 키토산 코팅 처리 Solid Lipid Nano-particle의 개발에 관한 연구)

  • Lee Geun-Soo;Kim Tae-Hoon;Lee Chun-Il;Pyo Hyeong-Bae;Choe Tae-Boo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.2 s.51
    • /
    • pp.141-146
    • /
    • 2005
  • Unstable cosmetic active ingredients could rapidly break down in chemical and photochemical process. Therefore, it has become a very important issue to encapsulate active ingredient for the stabilization. 7-Dehydrocholesterol (7-DHC), a precursor of vitamin $D_3$, has been shown to increase levels of protein and mRNA for heat shock protein in normal human epidermal keratinocytes. However, topical dermal application of 7-DHC is restricted due to its poor solubility and chemical unstability. In this study, 7-DHC was incorporated into nano-emulsion (NE), solid lipid nano-particle (SLN), and chitosan coated solid lipid nano-particle (CASLN), respectively. In order to prepare NE and SLN dispersion, high-pressure homogenization at temperature above the melting point of lipid was used Hydrogenated lecithin and polysorbate 60 were used as stabilizer for NE and SLN. CASLN was prepared by high speed homogenizing after adding chitosan solution to the SLN dispersion and showed positively charged particle properties. Decomposition rate of 7-DHC in NE, SLN and CASLN was studied as a function of time at different temperature. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies were performed to characterize state of lipid modification. It appeared that CASLN is the most effective to stabilize 7-DHC and may be used for a useful topical dermal delivery system.

Bio-Composite Materials Precursor to Chitosan in the Development of Electrochemical Sensors: A Critical Overview of Its use with Micro-Pollutants and Heavy Metals Detection

  • Sarikokba, Sarikokba;Tiwari, Diwakar;Prasad, Shailesh Kumar;Kim, Dong Jin;Choi, Suk Soon;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.237-257
    • /
    • 2020
  • The role of nano bio-composites precursor to chitosan are innumerable and are known for having different applications in various branches of physical sciences. The application to the sensor development is relatively new, where only few literature works are available to address the specific and critical analysis of nanocomposites in the subject area. The bio-composites are potential and having greater affinity towards the heavy metals and several micro-pollutants hence, perhaps are having wider implications in the low or even trace level detection of the pollutants. The nano-composites could show good selectivity and suitability for the detection of the pollutants as they are found in the complex matrix. However, the greater challenges are associated using the bio-composites, since the biomaterials are prone to be oxidized or reduced at an applied potential and found to be a hinderance for the detection of target pollutants. In addition, the materials could proceed with a series of electrochemical reactions, which could produce different by-products in analytical applications, resulting in several complex phenomena in electrochemical processes. Therefore, this review addresses critically various aspects of an evaluation of nano bio-composite materials in the electrochemical detection of heavy metals and micro-pollutants from aqueous solutions.

Manufacture and Physicochemical Properties of Chitosan Oligosaccharide/A2 β-Casein Nano-Delivery System Entrapped with Resveratrol

  • Kim, Mi Young;Ha, Ho-Kyung;Ayu, Istifiani Lola;Han, Kyoung-Sik;Lee, Won-Jae;Lee, Mee-Ryung
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.831-843
    • /
    • 2019
  • The purposes of this research were to form chitosan oligosaccharide (CSO)/A2 ${\beta}$-casein nano-delivery systems (NDSs) and to investigate the effects of production variables, such as CSO concentration levels (0.1%, 0.2%, and 0.3%, w/v) and manufacturing temperature ($5^{\circ}C$, $20^{\circ}C$, and $35^{\circ}C$), on the production and physicochemical characteristics of CSO/A2 ${\beta}$-casein NDSs to carry resveratrol. The morphological characteristics of CSO/A2 ${\beta}$-casein NDSs were assessed by the use of transmission electron microscopy (TEM) and particle size analyzer. High-performance liquid chromatography (HPLC) was applied to determine the entrapment efficiency (EE) of resveratrol. In the TEM images, globular-shaped particles with a diameter from 126 to 266 nm were examined implying that NDSs was successfully formed. As CSO concentration level was increased, the size and zeta-potential values of NDSs were significantly (p<0.05) increased. An increase in manufacturing temperature from $5^{\circ}C$ to $35^{\circ}C$ resulted in a significant (p<0.05) increase in the size and polydispersity index of NDSs. Over 85% of resveratrol was favorably entrapped in CSO/A2 ${\beta}$-casein NDSs. The entrapment efficiency (EE) of resveratrol was significantly (p<0.05) enhanced with an increase in manufacturing temperature while CSO concentration level did not significantly affect EE of resveratrol. There were no significant (p<0.05) changes observed in the size and polydispersity index of NDSs during heat treatments and storage in model milk and yogurt indicating that CSO/A2 ${\beta}$-casein NDSs exhibited excellent physical stability. In conclusion, the CSO concentration level and manufacturing temperature were the crucial determinants affecting the physicochemical characteristics of CSO/A2 ${\beta}$-casein NDSs containing resveratrol.

Synthesis of Nano Sulfur/Chitosan-Copper Complex and Its Nematicidal Effect against Meloidogyne incognita In Vitro and on Coffee Pots

  • Hong Nhung Nguyen;Phuoc Tho Tran;Nghiem Anh Tuan Le;Quoc Hien Nguyen;Duy Du Bui
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.261-271
    • /
    • 2024
  • Sulfur is one of the inorganic elements used by plants to develop and produce phytoalexin to resist certain diseases. This study reported a method for preparing a material for plant disease resistance. Sulfur nanoparticles (SNPs) stabilized in the chitosan-Cu2+ (CS-Cu2+) complex were synthesized by hydrolysis of Na2S2O3 in an acidic medium. The obtained SNPs/CS-Cu2+ complex consisting of 0.32% S, 4% CS, and 0.7% Cu (w/v), contained SNPs with an average size of ~28 nm as measured by transmission electron microscopy images. The X-ray diffraction pattern of the SNPs/CS-Cu2+ complex showed that SNPs had orthorhombic crystal structures. Interaction between SNPs and the CS-Cu2+ complex was also investigated by ultraviolet-visible. Results in vitro nematicidal effect of materials against Meloidogyne incognita showed that SNPs/CS-Cu2+ complex was more effective in killing second-stage juveniles (J2) nematodes and inhibiting egg hatching than that of CS and CS-Cu2+ complex. The values of LC50 in killing J2 nematodes and EC50 in inhibiting egg hatching of SNPs/CS-Cu2+ complex were 75 and 51 mg/l, respectively. These values were lower than those of CS and the CS-Cu2+ complex. The test results on the nematicidal effect against M. incognita on coffee pots showed that the SNPs/CS-Cu2+ complex was 100% effective at a concentration of 150 mg/l. Therefore, the SNPs/CS-Cu2+ complex could be considered as a biochemical material with potential for agricultural applications to control root-knot nematodes.

Physicochemical and Sensory Properties of Nanopowdered Chitosan-Added Maribo Cheese during Ripening

  • Kim, Hee-Yeon;Jeong, Yu-Tae;Bae, In-Hue;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.34 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • Nanopowdered chitosan (NPC) has high biological activities, such as blood cholesterol lowering effect and antidiabetic activity. This study is carried out to determine the effects of nano-powdered chitosan-added Maribo cheese (NCMC) for the physicochemical properties and sensory analysis during its ripening at $14^{\circ}C$ for 6 mon. From the results, the moisture and fat levels are not significantly influenced from the addition of chitosan (p>0.05), but ash contents increased with increasing chitosan concentrations and the protein contents decreased with increasing chitosan concentrations. In the short-chain fatty acids analysis during the ripening, the total production is initially 13.79 ppm in 0.2% NCMC and 13.81 ppm in control, and their levels have steadily increased to 59.94 and 53.11 ppm, respectively. For the color levels, the $L^*$ values decreased, while the $a^*$ and $b^*$ values significantly increased during ripening for all samples (p<0.05). In texture analysis, the hardness and gumminess of NCMC significantly decreased as compared to the control during ripening (p<0.05), while the cohesiveness, springiness and chewiness were not significantly different among the treatments (p>0.05). In sensory analysis, the butyric off-flavor and bitterness increased slightly with increasing concentrations of NCMC during ripening. The overall acceptability of 0.2% NCMC held the highest score amongst the samples during the ripening. From the results obtained, the 0.2% NCMC was preferred during the ripening and observed the possibility of functional cheese.