Browse > Article
http://dx.doi.org/10.14478/ace.2020.1034

Bio-Composite Materials Precursor to Chitosan in the Development of Electrochemical Sensors: A Critical Overview of Its use with Micro-Pollutants and Heavy Metals Detection  

Sarikokba, Sarikokba (Department of Chemistry, School of Physical Sciences, Mizoram University)
Tiwari, Diwakar (Department of Chemistry, School of Physical Sciences, Mizoram University)
Prasad, Shailesh Kumar (Department of Chemistry, National Institute of Technology)
Kim, Dong Jin (Department of Environmental Science & Biotechnology, Hallym University)
Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University)
Lee, Seung-Mok (Department of Health and Environment, Catholic Kwandong University)
Publication Information
Applied Chemistry for Engineering / v.31, no.3, 2020 , pp. 237-257 More about this Journal
Abstract
The role of nano bio-composites precursor to chitosan are innumerable and are known for having different applications in various branches of physical sciences. The application to the sensor development is relatively new, where only few literature works are available to address the specific and critical analysis of nanocomposites in the subject area. The bio-composites are potential and having greater affinity towards the heavy metals and several micro-pollutants hence, perhaps are having wider implications in the low or even trace level detection of the pollutants. The nano-composites could show good selectivity and suitability for the detection of the pollutants as they are found in the complex matrix. However, the greater challenges are associated using the bio-composites, since the biomaterials are prone to be oxidized or reduced at an applied potential and found to be a hinderance for the detection of target pollutants. In addition, the materials could proceed with a series of electrochemical reactions, which could produce different by-products in analytical applications, resulting in several complex phenomena in electrochemical processes. Therefore, this review addresses critically various aspects of an evaluation of nano bio-composite materials in the electrochemical detection of heavy metals and micro-pollutants from aqueous solutions.
Keywords
Electrochemical sensor; Bio-composite materials; Chitosan; Detection limit; Glassy carbon electrode; Heavy metals; Micro-pollutants;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 F. Galgano, F. Favati, M. Bonadio, V. Lorusso, and P. Romano, Role of biogenic amines as index of freshness in beef meat packed with different biopolymeric materials, Food Res. Int., 42(8), 1147-1152 (2009).   DOI
2 M. Goodarzian, M. A. Khalilzade, F. Karimi, V. K. Gupta, M. Keyvanfard, H. Bagheri, and M. Fouladger, Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode, J. Mol. Liq., 197, 114-119 (2014).   DOI
3 M. Shalauddin, S. Akhter, S. Bagheri, M. S. A. Karim, N. A. Kadri, and W. J. Basirun, Immobilized copper ions on MWCNTS-chitosan thin film: Enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution, Int. J. Hydro. Ener., 42, 1995-9960 (2017).
4 A. R. Khaskheli, J. Fischer, J. Barek, V. Vyskocil, S. Muhammad, and I. Bhanger, Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural graphite-polystyrene composite film modified electrode, Electrochim. Acta, 101, 238-242 (2013).   DOI
5 A. E. Robinson, Martindale: The extra pharmacopoeia 27th edition, J. Pharm. Pharmacol., 29, 647-648 (1977).   DOI
6 D. Du, X. Huang, J. Cai, and A. Zhang, Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix, Sens. Actuat. B: Chem., 127, 531-535 (2007).   DOI
7 R. A. Harrington, R. C. Becker, and M. Ezekowitz, Antithrombotic therapy for coronary artery disease: The seventh ACCP conference on antithrombotic and thrombolytic therapy, Chest, 126, 513-548 (2004).   DOI
8 D. N. Salem, P. T. O'Gara, C. Madias, and S. G. Pauker, Valvular and structural heart disease: American college of chest physicians evidence-based clinical practice guidelines (8th edition), Chest, 133, 593-629 (2008).   DOI
9 D. E. Singer, G. W. Albers, J. E. Dalen, A. S. Go, J. L. Halperin, and W. J. Manning, Antithrombotic therapy in atrial fibrillation: The seventh ACCP conference on antithrombotic and thrombolytic therapy, Chest, 126, 429-456 (2004).   DOI
10 S. Sun, M. Wang, L. Su, J. Li, H. Li, and D. Gu, Study on warfarin plasma concentration and its correlation with international normalized ratio, J. Pharm. Biomed. Anal., 42, 218-222 (2006).   DOI
11 M. B. Gholivand and L. Mohammadi-Behzad, An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode, Mater. Sci. Eng. C, 57, 77-87 (2015).   DOI
12 R. Jain and Vikas, Voltammetric determination of cefpirome at multiwalled carbon nanotube modified glassy carbon sensor based electrode in bulk form and pharmaceutical formulation, Coll.. Surf. B: Biointerfaces, 87, 423-426 (2011).   DOI
13 J. Lienert, T. Buerki, and B. I. Escher, Reducing micropollutants with source control: Substance flow analysis of 212 pharmaceuticals in faeces and urine, Wat. Sci. Technol., 56(5), 87-96 (2007).   DOI
14 Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Zhang, S. Liang, and X. C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473-474, 619-641 (2014).   DOI
15 N. Bolong, A. F. Ismail, M. R. Salim, and T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination, 239, 229-246 (2009).   DOI
16 A. Joss, E. Keller, A. Alder, A. Gobel, C.S. McArdell, T. Ternes, and H. Siegrist, Removal of pharmaceuticals and fragrances in biological wastewater treatment, Wat. Res., 39, 3139-3152 (2005).   DOI
17 K. A. Landry and T. H. Boyer, Diclofenac removal in urine using strong-base anion exchange polymer resins, Wat. Res., 47, 6432-6444 (2013).   DOI
18 S. Akhter, W. J. Basirun, Y. Alias, M. R. Johan, S. Bagheri, M. Shalauddin, M. Ladan, and N. S. Anuar, Enhanced amperometric detection of paracetamol by immobilized cobalt ion on functionalized MWCNTs - chitosan thin film, Anal. Biochem., 551, 29-36 (2018).   DOI
19 H. Yin, K. Shang, X. Meng, and S. Ai, Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide, Microchim. Acta, 175, 39-46 (2011).   DOI
20 S. J. R. Prabakar and S. S. Narayanan, Amperometric determination of paracetomol by a surface modified cobalt hexacyanoferrate graphite wax composite electrode, Talanta, 72, 1818-1827 (2007).   DOI
21 C. E. Gattullo, H. Bahrs, C. E. W. Steinberg, and E. Loffredo, Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter, Sci. Total Environ., 416, 501-506 (2012)   DOI
22 Z. Xu, X. Fan, Q. Ma, B. Tang, Z. Lu, J. Zhang, G. Mo, J. Ye, and J. Ye, A sensitive electrochemical sensor for simultaneous voltammetric sensing of cadmium and lead based on $Fe_3O_4$/multiwalled carbon nanotube/laser scribed graphene composites functionalized with chitosan modified electrode, Mater. Chem. Phys., 238, 121877 (2019).   DOI
23 G. Wilson, Text Book of Organic Medicinal and Pharmaceutical Chemistry, 11th edition, Lippincott, London (2004).
24 A. Chaudhury, In vitro activity of cefpirome: A new fourth generation cephalosporin, Ind. J. Med. Microbiol., 21, 52-55 (2003).
25 J. Barek, J. Fischer, T. Navratil, K. Peckova, B. Yosypchuk, and J. Zima Nontraditional electrode materials in environmental analysis of biologically active organic compounds, Electroanalysis, 19, 19-20 (2007).
26 W. Wu, M. Jia, Z. Wang, W. Zhang, Q. Zhang, G. Liu, Z. Zhang, and P. Li, Simultaneous voltammetric determination of cadmium (II), lead(II), mercury(II), zinc(II), and copper(II) using a glassy carbon electrode modified with magnetite ($Fe_3O_4$) nanoparticles and fluorinated multiwalled carbon nanotubes, Microchim. Acta., 186, 97 (2019).   DOI
27 S. Xiong, B. Yang, D. Cai, G. Qiu, and Z. Wu, Individual and simultaneous stripping voltammetric and mutual interference analysis of Cd(II), Pb(II)and Hg(II) with reduced graphene oxide-$Fe_3O_4$ nanocomposites, Electrochim. Acta, 185, 52-61 (2015).   DOI
28 G. Padmalaya, B. S. Sreeja, P. S. Kumar, and M. Arivanandhan, Chitosan zinc anchored oxide nanocompositeas modified electrochemical sensor for the detection of Cd(II) ions, Desal. Wat. Treat., 97, 295-303 (2017).   DOI
29 Y. Chu, F. Gao, F. Gao, and Q. Wang, Enhanced stripping voltammetric response of Hg(II), Cu(II), Pb(II) and Cd(II) by ZIF-8 and its electrochemical analytical application, J. Electroanal. Chem., 835, 293-300 (2019).   DOI
30 S. Prakash, T. Chakrabarty, A. K. Singh, and V. K. Shahi, Silver nanoparticles built-in chitosan modified glassy carbon electrode for anodic stripping analysis of As(III) and its removal from water, Electrochim. Acta, 72, 157-164 (2012).   DOI
31 A. C. Ion, I. Ion, A. Culetu, D. Gherase, C. A. Moldovan, R. Iosub, and A. Dinescu, Acetylcholinesterase voltammetric biosensors based on carbon nanostructurechitosan composite material for organophosphate pesticides, Mater. Sci. Eng. C, 30, 817-821 (2010).   DOI
32 R. Solna, S. Sapelnikova, P. Skladal, M. Winther-Nielsen, C. Carlsson, J. Emneus, and T. Ruzgas, Multienzyme electrochemical array sensor for determination of phenols and pesticides, Talanta, 65, 349-357 (2005).   DOI
33 J. Massoulie, L. Pezzementi, S. Bon, E. Krejci, and F. M. Vallette, Molecular and cellular biology of cholinesterases, Prog. Neurobiol., 41, 31-91 (1993).   DOI
34 D. Du, X. Huang, J. Cai, and A. Zhang, Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix, Sens. Actuat. B: Chem., 127, 531-535 (2007).   DOI
35 J. J. Yang, C. Yang, H. Jiang, and C. L. Qiao, Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates, Biodegradation, 19, 831-839 (2008).   DOI
36 W. Yazhen, Q. Hongxin, H. Siqian, and X. Junhui, A novel methyl parathion electrochemical sensor based on acetylene black-chitosan composite film modified electrode, Sens. Actuat. B: Chem., 147, 587-592 (2010).   DOI
37 S. Takahashi, X. J. Chi, Y. Yamaguchi, H. Suzuki, S. Sugaya, and K. Kita, Potential human reproductive and development effects of bisphenol A, Mutat. Res., 490, 199-207 (2001).   DOI
38 S. Saha and P.Sarkar, Differential pulse anodic stripping voltammetry for detection of As (III) by Chitosan-$Fe(OH)_3$ modified glassy carbon electrode: A new approach towards speciation of arsenic, Talanta, 158, 235-245 (2016).   DOI
39 Thanhmingliana, S. M. Lee, and D. Tiwari, Use of hybrid materials in the decontamination of bisphenol A from aqueous solutions, RSC Adv., 4, 43921-43930 (2014).
40 A. V. Krishnan, P. Stathis, S. F. Permuth, L. Tokes, and D. Feldman, Bisphenol-A: An estrogenic substance is released from polycarbonate flasks during autoclaving, Endocrinology, 132, 2279-2286 (1993).   DOI
41 K. Y. Lin and W. Chu, Simulation and quantification of the natural decay of a typical endocrine disrupting chemical Atrazine in an aquatic system, J. Hazard. Mater., 192, 1260-1266 (2011).   DOI
42 D. J. Lee, S. A. Senseman, A. S. Sciumbato, S. C. Jung, and L. J Krutz The effect of titanium dioxide alumina beads on the photocatalytic degradation of picloram in water, J. Agric. Food Chem., 51, 2659-2664 (2003).   DOI
43 L. Tang, G.-M. Zeng, G.-L. Shen, Y.-P. Li, Y. Zhang, and D.-L. Huang, Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor, Environ. Sci. Technol., 42, 1207-1212 (2008).   DOI
44 A. Roda, P. Rauch, E. Ferri, S. Girotti, S. Ghini, G. Carrea, and R. Bovara, Chemiluminescent flow sensor for the determination of Paraoxon and Aldicarb pesticides, Anal. Chim. Acta., 294, 35-42 (1994).   DOI
45 H. Xing, X. Wang, G. Sunb, X. Gao, S. Xu, and X. Wang, Effects of atrazine and chlorpyrifos on activity and transcription of glutathione S-transferase in common carp (Cyprinus carpio L.), Environ. Toxicol. Pharmacol., 33, 233-244 (2012).   DOI
46 M. Kucka, K. Pogrmic-Majkic, S. Fa, S. S. Stojilkovic, and R. Kovacevic, Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4, Toxicol. Appl. Pharmacol., 265, 19-26 (2012).   DOI
47 L. F. Delgado, P. Charles, K. Glucina, and C. Morlay, The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon - A review, Sci. Total Environ., 435-436, 509-525 (2012).   DOI
48 M. Valko, H. Morris, and M. T. D. Cronin, Metals, toxicity and oxidative stress, Curr. Med. Chem., 12, 1161-1208 (2005).   DOI
49 Zirlianngura, D. Tiwari, J.-H. Ha, and S.-M. Lee, Efficient use of porous hybrid materials in a selective detection of lead(II) from aqueous solutions: An electrochemical study, Metals, 7, 124 (2017).   DOI
50 M. M. Munoz de Toro, C. M. Markey, P. R. Wadia, E. H. Luque, B. S. Rubin, C. Sonnenschein, and A. M. Soto, Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice, Endocrinology, 146, 4138-4147 (2005).   DOI
51 K. L. Howdeshell, A. K. Hotchkiss, K. A. Thayer, J. G. Vandenbergh, and F. S. vom Saal, Exposure to bisphenol A advances puberty, Nature, 401, 763-764 (1999).   DOI
52 A WWF European Toxics Programme Report, Bisphenol A: A Known Endocrine Disruptor, Registered Charity No. 20170 (2000).
53 S. Yuksel, N. Kabay, and M. Yuksel, Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes, J. Hazard. Mater., 263, 307-310 (2013).   DOI
54 J. G. Deng, Y. X. Peng, C. L. He, X. P. Long, P. Li, and A. S. C. Chan, Magnetic and conducting $Fe_3O_4$-polypyrrole nanoparticles with core-shell structure, Polym. Int., 52, 1182 (2003).   DOI
55 C. Yu, L. Gou, X. Zhou, N. Bao, and H. Gu, Chitosan-$Fe_3O_4$ nanocomposite based electrochemical sensors for the determination of bisphenol A, Electrochim. Acta, 56, 9056-9063 (2011).   DOI
56 N. Kaura, A. Bhartia, S. Batraa, S. Ranaa, S. Ranab, A. Bhallab, and N. Prabhakara, An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of Ochratoxin A, Microchem. J., 144, 102-109 (2019).   DOI
57 Q. Xu, X. Li, Y. Zhou, H. Wei, X. Y. Hu, Y. Wang, and Z. Yang, An enzymatic amplified system for the detection of 2,4-dichlorophenol based on graphene membrane modified electrode, Anal. Methods, 4, 3429-3435 (2012).   DOI
58 Rawajfih and N. Nsour, Characteristics of phenol and chlorinated phenolssorption onto surfactant-modified bentonite, J. Colloid Interf. Sci., 298, 39-49 (2006).   DOI
59 L. Yu, X. Yue, R. Yang, S. Jing, and L. Qu, A sensitive and low toxicity electrochemical sensor for 2,4-dichlorophenol based on the nanocomposite of carbon dots, hexadecyltrimethyl ammonium bromide and chitosan, Sens. Actuat. B: Chem., 224, 241-247 (2016).   DOI
60 E. Pashai, G. N. Darzi, M. Jahanshahi, F. Yazdian, and M. Rahimnejad, An electrochemical nitric oxide biosensor based on immobilizedcytochrome c on a chitosan-gold nanocomposite modified goldelectrode, Int. J. Biol Macromol., 108, 250-258 (2018).   DOI
61 D. Tiwari, Zirlianngura, and S. M. Lee, Fabrication of efficient and selective total arsenic sensor using the hybrid materials modified carbon paste electrodes, J. Electroanal. Chem., 784, 109-114 (2017).   DOI
62 B. K. Bansod, T. Kumar, R. Thakur, S. Rana, and I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms, Biosen. Bioelectron., 94, 443-455 (2017).   DOI
63 D. M. Quinn, Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states, Chem. Rev., 87, 955-979 (1987).   DOI
64 X. Dai, O. Nekrassova, M. E. Hyde, and R. G. Compton, Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes, Anal. Chem., 76, 5924-5929 (2004).   DOI
65 J. Lalmalsawmi, Zirlianngura, D. Tiwari, and S.-M. Lee, Low cost, highly sensitive and selective electrochemical detection of arsenic (III) using silane grafted based nanocomposite, Environ. Eng. Res., 25(4), 579-587 (2020).   DOI
66 A. Salimi, B. Pourbahram, S. Mansouri-Majd, and R. Hallaj, Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection, Electrochim. Acta, 156, 207-215 (2015).   DOI
67 Z. Lu, S. Yang, Q. Yang, S. Luo, C. Liu, and Y. Tang, A glassy carbon electrode modified with graphene, gold nanoparticles and chitosan for ultrasensitive determination of lead(II), Microchim. Acta, 180, 555-562 (2013).   DOI
68 T. Priya, N. Dhanalakshmi, and N. Thinakaran, Elctrochemical behaviour of Pb(II) on a heparin modified chitosan/graphene nanocomposite film coated glassy carbon electrode and its sensitive detection, Int. J. Biol. Macromol., 104, 672-680 (2017).   DOI
69 A. Camila, D. Lima, P. S. da Silva, and A. Spinelli, Chitosan-stabilized silver nanoparticles for voltammetric detection of nitrocompounds, Sens. Actuat. B: Chem., 196, 39-45 (2014).   DOI
70 N. Prabhakar, H. Thakur, A. Bharti, and N. Kaur, Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion, Anal. Chim. Acta., 939, 108-116 (2016).   DOI
71 C. Sun, Y. Zou, D. Wang, Z. Geng, W. Xu, F. Liu, and J. Cao, Construction of chitosan-Zn-based electrochemical biosensing platform for rapid and accurate assay of actin, Sensors, 18, 1865 (2018).   DOI
72 T. Gong, J. Liu, X. Liu, J. Liu, J. Xiang, and Y. Wu, A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks, Food Chem., 213, 306-312 (2016).   DOI
73 Y. Zuo, J. Xu, F. Jiang, X. Duan, L. Lu, H. Xing, T. Yang, Y. Zhang, G. Ye, and Y. Yu, Voltammetric sensing of Pb(II) using a glassy carbon electrode modified with composites consisting of $Co_3O_4$ nanoparticles, reduced graphene oxide and chitosan, J. Electroanal. Chem., 801, 146-152 (2017).   DOI
74 C. Hao, Y. Shen, J. Shen, K. Xu, X. Wang, Y. Zhao, and C. Ge, A glassy carbon electrode modified with bismuth oxide nanoparticles and chitosan as a sensor for Pb(II) and Cd(II), Microchim. Acta, 183, 1823-1830 (2016).   DOI
75 M. B. Gumpua, S. Sethuramanb, U. M. Krishnanb, and J. B. B. Rayappana, A review on detection of heavy metal ions in water - An electrochemical approach, Sens. Actuat. B, 213, 515-533 (2015).   DOI
76 D. Bagal-Kestwal, M. S. Karve, B. Kakade, and V. K. Pillai, Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor's sensitivity, Biosens. Bioelectron., 24, 657-664 (2008).   DOI
77 M. Kumar and A. Puri, A review of permissible limits of drinking water, Ind. J. Occupat. Environ. Med., 16, 1 (2012).   DOI
78 R. Sitko, P. Janik, B. Zawisza, E. Talik, E. Margui, and I. Queralt, Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent, Anal. Chem., 87, 3535-3542 (2015).   DOI
79 J. Tashkhourian, S. F. Nami-Ana, and M. Shamsipur, Designing a modified electrode based on graphene quantum dotchitosan application to electrochemical detection of epinephrine, J. Mol. Liq., 266, 548-556 (2018).   DOI
80 H. V. Tran, C. D. Huynh, H. V. Tran, and B. Piro, Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite, Arab. J. Chem., 11, 453-459 (2018).   DOI
81 S. Rajabzadeh, G. H. Rounaghi, M. H. Arbab-Zavar, and N. Ashraf, Development of a dimethyl disulfide electrochemical sensor based onelectrodeposited reduced graphene oxide-chitosan modified glassycarbon electrode, Electrochim. Acta, 135, 543-549 (2014).   DOI
82 M. Rajkumar, S. Thiagarajan, and S.-M. Chen, Electrochemical detection of arsenic in various water samples, Int. J. Electrochem. Sci., 6, 3164-3177 (2011).
83 V. N. Losev, O. V. Buyko, A. K. Trofimchuk, and O. N. Zuy, Silica sequentially modified with polyhexamethylene guanidine and arsenazo I for preconcentration and ICPOES determination of metals in natural waters. Micro Chem. J., 123, 84-89 (2015).
84 Y. Yi, G. Zhu, C. Liu, Y. Huang, Y. Zhang, H. Li, J. Zhao, and S. Yao, A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides, Anal. Chem., 85, 11464-11470 (2013).   DOI
85 M. C. Rouget, Des substances amylacees dans les tissus des animaux, specialement des Articules (chitine). Comp. Rend., 48, 792-795 (1859).
86 A. O. Idris, J. P. Mafa, N. Mabuba, and O. A. Arotiba, Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water, Russ. J. Electrochem., 53(2),170-177 (2017).   DOI
87 X. Dai and R. G. Compton, Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: Arsenic detection without interference from copper, Analyst, 131, 516-521 (2006).   DOI
88 H. Gu, Y. Yang, F. Chen, T. Liu, J. Jin, Y. Pan, and P. Miao, Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJf exonuclease-mediated amplification, Chem. Eng. J., 353, 305-310 (2018).   DOI
89 J.-F. Huang and H.-H. Chen, Gold-nanoparticle-embedded nafion composite modified on glassy carbon electrode for highly selective detection of arsenic(III), Talanta, 116, 852-859 (2013).   DOI
90 B. Liu, H. T. Lian, J. F. Yin, and X. Y. Sun, Dopamine molecularly imprinted electrochemical sensor based on graphene-chitosan composite, Electrochim. Acta, 75, 108-114 (2012).   DOI
91 W.-R. Zhao, T.-F. Kang, L.-P. Lu, and S.-Y. Cheng Electrochemical magnetic imprinted sensor based on MWCNTs@CS/CTABr surfactant composites for sensitive sensing of diethylstilbestrol, J. Electroanal. Chem., 818, 181-190 (2018).   DOI
92 Z. Wu, F. Guo, L. Huanga, and L. Wanga, Electrochemical nonenzymatic sensor based on cetyltrimethylammonium bromide and chitosan functionalized carbon nanotube modified glassy carbon electrode for the determination of hydroxymethanesulfinate in the presence of sulfite in foods, Food Chem., 259, 213-218 (2018).   DOI
93 M. Baccarina, F. A. Santosb, F. C. Vicentinic, V. Zucolottob, B. C. Janegitzd, and O. Fatibello-Filhoa, Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples, J. Electroanal. Chem., 799, 436-443 (2017).   DOI
94 S. Yang, R. Yang, G. Li, J. Li, and L. Qu, Voltammetric determination of theophylline ata Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode, J. Chem. Sci., 122, 919 (2010).   DOI
95 M. Ghanei-Motlagh and M. A. Tahera, Novel imprinted polymeric nanoparticles prepared by sol- gel technique for electrochemical detection of toxic cadmium(II) ions, Chem. Eng. J., 327, 135-141 (2017).   DOI
96 G. Zhao, Y. Si, H. Wang, and G. Liu, A portable electrochemical detection system based on graphene/ionic liquid modified screen-printed electrode for the detection of cadmium in soil by square wave anodic stripping voltammetry, Int. J. Electrochem. Sci., 11, 54-64 (2016).
97 D. Martin-Yerga, I. Alvarez-Martos, M. C. Blanco-Lopez, C. S. Henry, and M. T. Fernandez-Abedul, Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes, Anal. Chimica Acta., 981, 24-33 (2017).   DOI
98 C. Zhou, S. Li, W. Zhu, H. Pang, and H. Ma, A sensor of a polyoxometalate and Au-Pd alloy for simultaneously detection of dopamine and ascorbic acid, Electrochim. Acta, 113, 454-463 (2013).   DOI
99 K.-J. Huang, Y.-J. Liua, Y.-M. Liua, and L.-L. Wang, Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination, J. Hazard. Mater., 276, 207-215 (2014).   DOI
100 R. B. Pernites, R. R. Ponnapati, and R. C. Advincula, Surface plasmon resonance (SPR) detection of theophylline via electropolymerized molecularly imprinted poly-thiophenes, Macromolecules, 43, 9724-9735 (2010).   DOI
101 S. M. Majd, H. Teymourian, A. Salimi, and R. Hallaj, Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode, Electrochim. Acta, 108, 707-716 (2013).   DOI
102 A. O. Maria, A. O. Roberto, and N. M. Adriana, Selective spectrofluorimetric method for paracetamol determination through coumarinic compound formation, Talanta, 66, 229 (2005).   DOI
103 J. R. Vane, Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs, Nat. New Biol., 231, 232-235 (1971).   DOI
104 S. Muraoka and T. Miura, Inactivation of creatine kinase during the interaction of mefenamic acid with horseradish peroxidase and hydrogen peroxide: Participation by the mefenamic acid radical, Life Sci., 72, 1897-1907 (2003).   DOI
105 S. K. Shukla, A. K. Mishra, O. A. Arotiba, and B. B. Mamba, Chitosan-based nanomaterials: A state-of-the-art review, Int. J. Biol. Macromol., 59, 46-58 (2013).   DOI
106 D. Raafat, K. von Bargen, A. Haas, and H.-G. Sahl, Insights into the mode of action of chitosan as an antibacterial compound, Appl. Environ. Microbiol., 74, 3764-3773 (2008).   DOI
107 G. Crini and P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci., 33, 399-447 (2008).   DOI
108 Lalchhingpuii, D. Tiwari, Lalhmunsiama, and S. M. Lee, Chitosan templated synthesis of mesoporous silica and its application in the treatment of aqueous solutions contaminated with cadmium(II) and lead(II), Chem. Eng. J., 328, 434-444 (2017).   DOI
109 J. K. F. Suh and H. W. T. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review, Biomaterials, 21, 2589-2598 (2000).   DOI
110 W. Lian, S. Liu, J. Yu, X. Xing, J. Li, M. Cui, and J. Huang, Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin, Biosens. Bioelectron., 38, 163-169 (2012).   DOI
111 G. Yang, F. Zhao, and B. Zeng, Facile fabrication of a novel anisotropic gold nanoparticle-chitosan-ionic liquid/graphene modified electrode for the determination of theophylline and caffeine, Talanta, 127, 116-122 (2014).   DOI
112 L. Magerusan, F. Pogacean, M. Coros, C. Socaci, S. Pruneanu, C. Leostean, and I. O. Pana, Green methodology for the preparation of chitosan/graphene nanomaterial through electrochemical exfoliation and its applicability in Sunset Yellow detection, Electrochim. Acta, 283, 578-589 (2018).   DOI
113 G. Zhao, H. Wang, G. Liu, and Z. Wang, Box-Behnken response surface design for the optimization of electrochemical detection of cadmium by square wave anodic stripping voltammetry on bismuth film/glassy carbon electrode, Sens. Actuat. B: Chem., 235, 67-73 (2016).   DOI
114 P. Agrawal, G. J. Strijkers, and K. Nicolay, Chitosan-based systems for molecular imaging, Adv. Drug Delivery Rev., 62, 42-58 (2010).   DOI
115 Lalhmunsiama, Lalchhingpuii, B. P. Nautiyal, D. Tiwari, S. I. Choi, S.-H. Kong, and S.-M. Lee, Silane grafted chitosan for the efficient remediation of aquatic environment contaminated with arsenic (V), J. Colloid Interf. Sci., 467, 203-212 (2016).   DOI
116 B. Batra and C. S. Pundir, An amperometric glutamate biosensor based onimmobilization of glutamate oxidase onto carboxylated multiwalled carbonnanotubes/gold nanoparticles/chitosan composite film modified Au electrode, Biosens. Bioelectron., 47, 496-501 (2013).   DOI
117 X. Wang and X. Guo, Ultrasensitive $Pb^{2+}$ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles, Analyst, 134, 1348-1354 (2009).   DOI
118 Y. Hu, J. Li, Z. Zhang, H. Zhang, L. Luo, and S. Yao, Imprinted sol-gel electrochemical sensor for the determination of benzylpenicillin based on $Fe_3O_4@SiO_2$/multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode, Anal. Chimica Acta., 698, 61-68 (2011).   DOI
119 F. L. Martin and A. E. M. McLean, Comparison of paracetamol-induced hepatotoxicity in the rat in vivo with progression of cell injury in vitro in rat liver slices, Drug Chem. Toxicol., 21, 477-494 (1998).   DOI
120 L. Liu and J. Song, Voltammetric determination of mefenamic acid at lanthanum hydroxide nanowires modified carbon paste electrodes, Anal. Biochem., 354, 22-27 (2006).   DOI
121 J. Xia, X. Cao, Z. Wang, M. Yang, F. Zhang, B. Lu, F. Li, L. Xia, Y. Li, and Y. Xia, Molecularly imprinted electrochemical biosensor based onchitosan/ionic liquid-graphene composites modified electrodefor determination of bovine serum albumin, Sens. Actuat. B: Chem., 225, 305-311(2016).   DOI
122 D. Yuan, S. Chen, F. Hu, C. Wang, and R. Yuan, Non-enzymatic amperometric sensor of catechol and hydroquinone using Pt-Au-organosilica@ chitosan composites modified electrode, Sens. Actuat. B: Chem., 168, 193-199 (2012).   DOI
123 F. mollarasouli, K. Asadpour-Zeynali, S. Campuzano, P. Yanez-Sedeno, and J. M. Pingarron, Non-enzymatic hydrogen peroxide sensor based on graphene quantum dots-chitosan/methylene blue hybrid nanostructures, Electrochim. Acta, 246, 303-314 (2017).   DOI
124 N. Dione, S. Khelaifia, J. C. Lagier, and D. Raoult, The aerobic activity of metronidazole against anaerobic bacteria, Int. J. Antimicrob. Agents, 45, 537-540 (2015).   DOI
125 A. Babaei, M. Afrasiabi, and M. Babazadeh, A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples, Electroanalysis, 22, 1743-1749 (2010).   DOI
126 L. A. Dunn, K. T. Andrews, J. S. McCarthy, J. M. Wright, T. S. Skinner-Adams, P. Upcroft, and J. A. Upcroft, The activity of protease inhibitors against Giardia duodenalis and metronidazole-resistant Trichomonas vaginalis, Int. J. Antimicrob. Agents, 29, 98-102 (2007).   DOI
127 A. H. Davies, J. A. Mafadzean, and S. Squires, Treatment of Vincent's stomatitis with metronidazole, Br. Med. J., 5391, 1149-1150 (1964).
128 A. Katsandri, A. Avlamis, A. Pantazatou, G. L. Petrikkos, N. J. Legakis, and J. Papaparaskevas, In vitro activities of Tigecycline against recently isolated Gram-negative anaerobic bacteria in Greece, including metronidazole-resistant strains, Diagn. Microbiol. Infect. Dis., 55, 231-236 (2006).   DOI
129 S. Meenakshi, K. Pandian, L. S. Jayakumari, and S. Inbasekaran, Enhanced amperometric detection of metronidazole in drug formulations and urine samples based on chitosan protected tetrasulfonated copper phthalocyanine thin- film modified glassy carbon electrode, Mater. Sci. Eng. C, 59, 136-144 (2016).   DOI
130 S. J. Ling, R. Yuan, Y. Q. Chai, and T. T. Zhang, Study on immunosensor basedon gold nanoparticles/chitosan and $MnO_2$ nanoparticles composite mem-brane/Prussian blue modified gold electrode, Bioprocess Biosyst. Eng., 32, 407-414 (2009).   DOI
131 C. Lalhriatpuia, D. Tiwari, A. Tiwari, and S. M. Lee, Immobilized nanopillars-$TiO_2$ in the efficient removal of micro-pollutants from aqueous solutions: Physico-chemical studies, Chem. Eng. J., 281, 782-792 (2015).   DOI
132 D. Vogna, R. Marotta, A. Napolitano, R. Andreozzi, and M. d'Ischia, Advanced oxidation of the pharmaceutical drug diclofenac with UV/$H_2O_2$ and ozone, Wat. Res., 38, 414-422 (2004).   DOI
133 Y. Zhang, S. Y. Geissen, and C. Gal, Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies, Chemosphere, 73, 1151-1161 (2008).   DOI
134 J. M. Herrmann, Heterogeneous photocatalysis: Fundamentals and to the removal of various types of aqueous pollutants, Catal. Today, 53, 115-129 (1999).   DOI
135 J. Sabate, J. Labanda, and J. Llorens Nanofiltration of biogenic amines in acidic conditions: Influence of operation variables and modeling. J. Membr. Sci., 310, 594-601 (2008).   DOI
136 D. Rao, Q. Sheng, and J. Zheng, Preparation of flower-like Pt nanoparticles decorated chitosan-grafted graphene oxide and its electrocatalysis of hydrazine, Sens. Actuat. B: Chem., 236, 192-200 (2016).   DOI
137 C. Martinez, L. M. Canle, M. I. Fernandez, J. A. Santaballa, and J. Faria, Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials, Appl. Catal. B: Environ., 107, 110-118 (2011).   DOI
138 J. L. G. Oaks, M. Virani, M. Z. Watson, R. T. Meteyer, C. U. Rideout, B. A. Shivaprasad, H. L. Ahmed, S. Chaudhry, M. J. I. Arshad, M. Mahmood, S. Ali, and A. A. A. Khan, Diclofenac residues as the cause of vulture population decline in Pakistan, Nature, 427, 630-633 (2004).   DOI
139 A. C. Mehinto, E. M. Hill, and C. R. Tyler, Uptake and biological effects environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss), Environ. Sci. Technol., 44, 2176-2182 (2010).   DOI
140 F. G. Delolo, C. Rodrigues, M. Martins da Silva, L. R. Dinelli, F. N. Delling, J. Zukerman-Schpector, and A. A. Batista, A new electrochemical sensor containing a film of chitosan-supported ruthenium: Detection and quantification of sildenafil citrate and acetaminophen, J. Braz. Chem. Soc., 25, 550-559 (2014).
141 F. Coloretti, C. Chiavari, E. Armaforte, S. Carri, and G. Castagnetti, Combined use of starter cultures and preservatives to control production of biogenic amines and improve sensorial profile in low-acid salami, J. Agri. Food Chem., 56(23), 11238-11244 (2008).   DOI
142 N. Garcia-Villar, S. Hernandez-Cassou, and J. Saurina, Characterization of wines through the biogenic amine contents using chromatographic techniques and chemometric data analysis, J. Agri. Food Chem., 55(18), 7453-7461 (2007).   DOI
143 C. O. Mohan, C. N. Ravishankar, T. K. S. Gopal, K. A. Kumar, and K. V. Lalitha, Biogenic amines formation in seer fish (Scomberomorus commerson) steaks packed with $O_2$ scavenger during chilled storage, Food Res. Int., 42(3), 411-416 (2009).   DOI
144 N. F. Atta and A. M. Abdel-Mageed, Smart electrochemical sensor for some neurotransmitters using imprinted sol-gel films, Talanta, 80(2), 511-518 (2009).   DOI
145 B. J. McCabe-Sellers, C. G. Staggs, and M. L. Bogle, Tyramine in foods and monoamine oxidase inhibitor drugs: A crossroad where medicine, nutrition, pharmacy, and food industry converge, J. Food Composition Anal., 19(1), 58-65 (2006).
146 Y. Si, J. Liu, A. Wang, S. Niu, and J. Wan, A chitosan-graphene electrochemical sensor for the determination of copper(II), Instrument. Sci. Technol., 43(3), 357-368 (2015).   DOI
147 C. Xiang, R. Li, B. Adhikari, Z. She, Y. Li, and H.-B. Kraatz, Sensitive electrochemical detection of Salmonella with chitosan-gold nanoparticles composite film, Talanta, 140, 122-127 (2015).   DOI
148 Q. Zhang, Y. Qing, X. Huang, C. Li, and J. Xue, Synthesis of single-walled carbon nanotubes-chitosan nanocomposites for the development of an electrochemical biosensor for serum leptin detection, Mater. Lett., 211, 348-351(2018).   DOI
149 H. Ciftci, U. Tamer, A. U. Metin, E. Alver, and N. Kizir, Electrochemical copper (II) sensor based on chitosan covered gold Nanoparticles, J Appl. Electrochem., 44, 563-572 (2014).   DOI
150 Z. Mo, H. Liu, R. Hu, H. Gou, Z. Li, and R. Guo, Amino-functionalized graphene/chitosan composite as an enhanced sensing platform for highly selective detection of Cu(II), Ionics, 24(5), 1505-1513 (2017).   DOI
151 Z. Guo, D.-D. Li, X.-K. Luo, Y.-H. Li, Q.-N. Zhao, M.-M. Li, Y.-T. Zhao, T.-S. Sun, and C. Ma, Simultaneous determination of trace Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/ poly-L-lysine nanocomposite modified glassy carbon electrode, J. Colloid Interf. Sci., 490, 11-22 (2017).   DOI
152 C. I. Fort, L. C. Cotet, A. Vulpoi, G. L. Turdean, V. Danciu, L. Baia, and I.C. Popescu, Bismuth doped carbon xerogel nanocomposite incorporated in chitosan matrix for ultrasensitive voltammetric detection of Pb(II)and Cd(II), Sens. Actuat. B: Chem., 220, 712-719 (2015).   DOI