DOI QR코드

DOI QR Code

Synthesis of Nano Sulfur/Chitosan-Copper Complex and Its Nematicidal Effect against Meloidogyne incognita In Vitro and on Coffee Pots

  • Hong Nhung Nguyen (Graduate University of Science and Technology, Vietnam Academy of Science and Technology) ;
  • Phuoc Tho Tran (Institute of Applied Materials Science, Vietnam Academy of Science and Technology) ;
  • Nghiem Anh Tuan Le (Institute of Applied Materials Science, Vietnam Academy of Science and Technology) ;
  • Quoc Hien Nguyen (Vietnam Atomic Energy Institute) ;
  • Duy Du Bui (Graduate University of Science and Technology, Vietnam Academy of Science and Technology)
  • Received : 2023.11.05
  • Accepted : 2024.03.16
  • Published : 2024.06.01

Abstract

Sulfur is one of the inorganic elements used by plants to develop and produce phytoalexin to resist certain diseases. This study reported a method for preparing a material for plant disease resistance. Sulfur nanoparticles (SNPs) stabilized in the chitosan-Cu2+ (CS-Cu2+) complex were synthesized by hydrolysis of Na2S2O3 in an acidic medium. The obtained SNPs/CS-Cu2+ complex consisting of 0.32% S, 4% CS, and 0.7% Cu (w/v), contained SNPs with an average size of ~28 nm as measured by transmission electron microscopy images. The X-ray diffraction pattern of the SNPs/CS-Cu2+ complex showed that SNPs had orthorhombic crystal structures. Interaction between SNPs and the CS-Cu2+ complex was also investigated by ultraviolet-visible. Results in vitro nematicidal effect of materials against Meloidogyne incognita showed that SNPs/CS-Cu2+ complex was more effective in killing second-stage juveniles (J2) nematodes and inhibiting egg hatching than that of CS and CS-Cu2+ complex. The values of LC50 in killing J2 nematodes and EC50 in inhibiting egg hatching of SNPs/CS-Cu2+ complex were 75 and 51 mg/l, respectively. These values were lower than those of CS and the CS-Cu2+ complex. The test results on the nematicidal effect against M. incognita on coffee pots showed that the SNPs/CS-Cu2+ complex was 100% effective at a concentration of 150 mg/l. Therefore, the SNPs/CS-Cu2+ complex could be considered as a biochemical material with potential for agricultural applications to control root-knot nematodes.

Keywords

Acknowledgement

This research was funded by the program selected basis the topic of the Vietnam Academy of Science and Technology (grant No: CSCL19.02/23-24).

References

  1. Abdallah, Y., Ogunyemi, S. O., Abdelazez, A., Zhang, M., Hong, X., Ibrahim, E., Hossain, A., Fouad, H., Li, B. and Chen, J. 2019. The green synthesis of MgO nano-flowers using Rosmarinus officinalis L. (Rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae. Biomed. Res. Int. 2019:5620989.
  2. Abdelrhim, A. S., Mazrou, Y. S., Nehela, Y., Atallah, O. O., ElAshmony, R. M. and Dawood, M. F. A. 2021. Silicon dioxide nanoparticles induce innate immune responses and activate antioxidant machinery in wheat against Rhizoctonia solani. Plants 10:2758.
  3. Akhtar, M. A., Ilyas, K., Dlouhy, I., Siska, F. and Boccaccini, A. R. 2020. Electrophoretic deposition of copper (II)-chitosan complexes for antibacterial coatings. Int. J. Mol. Sci. 21:2637.
  4. Al Banna, L. S., Salem, N. M., Jaleel, G. A. and Awwad, A. M. 2020. Green synthesis of sulfur nanoparticles using Rosmarinus officinalis leaves extract and nematicidal activity against Meloidogyne javanica. Chem. Int. 6:137-143.
  5. Anbinder, P. S., Macchi, C., Amalvy, J. and Somoza, A. 2019. A study of the structural changes in a chitosan matrix produced by the adsorption of copper and chromium ions. Carbohydr. Polym. 222:114987.
  6. Benhabiles, M. S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A. and Mameri, N. 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 29:48-56.
  7. Bukola, A. M., Adepeju, I. T., Olalekan, R. M., Amazinggrace, K. I., Joyce, O. T., Abel, Y. K., Itohan, I. M., Francisca, O. C. and Abiola, K. E. 2023. Efficacy of chitosan synthesized from shrimp (Penaeus notialis) shell against Aspergillus flavus of groundnut and wheat. GSC Biol. Pharm. Sci. 22:235-242.
  8. Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R., Biswas, P. and Saharan, V. 2017. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci. Rep. 7:9754.
  9. Clement, R., Tuan, D., Cuong, V., Van, B. L., Trung, H. Q. and Long, C. T. M. 2023. Transitioning from monoculture to mixed cropping systems: the case of coffee, pepper, and fruit trees in Vietnam. Ecol. Econ. 214:107980.
  10. Du, B. D., Ngoc, D. T. B., Thang, N. D., Tuan, L. N. A., Thach, B. D. and Hien, N. Q. 2019. Synthesis and in vitro antifungal efficiency of alginate-stabilized Cu2O-Cu nanoparticles against Neoscytalidium dimidiatum causing brown spot disease on dragon fruit plants (Hylocereus undatus). Vietnam J. Chem. 57:318-323.
  11. Duy, N. N., Phu, D. V., Anh, N. T. and Hien, N. Q. 2011. Synergistic degradation to prepare oligochitosan by γ-irradiation of chitosan solution in the presence of hydrogen peroxide. Radiat. Phys. Chem. 80:848-853.
  12. El-Ashry, R. M., El-Saadony, M. T., El-Sobki, A. E. A., El-Tahan, A. M., Al-Otaibi, S., El-Shehawi, A. M., Saad, A. M. and Elshaer, N. 2022. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi J. Biol. Sci. 29:920-932.
  13. Elbeshehy, E. K. F., Elazzazy, A. M. and Aggelis, G. 2015. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens. Front. Microbiol. 6:453.
  14. Elmer, W., Ma, C. and White, J. 2018. Nanoparticles for plant disease management. Curr. Opin. Environ. Sci. Health 6:66-70.
  15. ELmezayyen, A. S. and Reicha, F. M. 2015. Preparation of chitosan copper complexes: molecular dynamic studies of chitosan and chitosan copper complexes. Open J. Appl. Sci. 5:415-427.
  16. Fan, Z., Qin, Y., Liu, S., Xing, R., Yu, H. and Li, P. 2020. Chitosan oligosaccharide fluorinated derivative control root-knot nematode (Meloidogyne incognita) disease based on the multi-efficacy strategy. Mar. Drugs 18:273.
  17. Germida, J. J. and Janzen, H. H. 1993. Factors affecting the oxidation of elemental sulfur in soils. Fertil. Res. 35:101-114.
  18. Gkanatsiou, C., Ntalli, N., Menkissoglu-Spiroudi, U. and Dendrinou-Samara, C. 2019. Essential metal-based nanoparticles (copper/iron NPs) as potent nematicidal agents against Meloidogyne spp. J. Nanotechnol. Res. 1:44-58.
  19. Gritsch, L., Lovell, C., Goldmann, W. H. and Boccaccini, A. R. 2018. Fabrication and characterization of copper (II)-chitosan complexes as antibiotic-free antibacterial biomaterial. Carbohydr. Polym. 179:370-378.
  20. Guo, Y., Zhao, J., Yang, S., Yu, K., Wang, Z. and Zhang, H. 2006. Preparation and characterization of monoclinic sulfur nanoparticles by water-in-oil microemulsions technique. Powder Technol. 162:83-86.
  21. Hao, G., Hu, Y., Shi, L., Chen, J., Cui, A., Weng, W. and Osako, K. 2021. Physicochemical characteristics of chitosan from swimming crab (Portunus trituberculatus) shells prepared by subcritical water pretreatment. Sci. Rep. 11:1646.
  22. Heflish, A. A., Hanfy, A. E., Ansari, M. J., Dessoky, E. S., Attia, A. O., Elshaer, M. M., Gaber, M. K., Kordy, A., Doma, A. S., Abdelkhalek, A. and Behiry, S. I. 2021. Green biosynthesized silver nanoparticles using Acalypha wilkesiana extract control root-knot nematode. J. King Saud Univ. Sci. 33:101516.
  23. Hooper, D. J. 1990. Extraction and processing of plant and soil nematodes. In: Plant parasitic nematodes in subtropical and tropical agriculture, eds. by M. Luc, R. A. Sikora and J. Bridge, pp. 45-68. CAB International, Wallingford, UK.
  24. Jepson, S. B. 1987. Indentification of root-knot nematodes (Meloidogyne species). CABI, Wallingford, UK. 265 pp.
  25. Jiang, C.-H., Xie, P., Li, K., Xie, Y.-S., Chen, L.-J., Wang, J.-S., Xu, Q. and Guo, J.-H. 2018. Evaluation of root-knot nematode disease control and plant growth promotion potential of biofertilizer Ning shield on Trichosanthes kirilowii in the field. Braz. J. Microbiol. 49:232-239.
  26. Kaman, P. K. and Dutta, P. 2019. Synthesis, characterization and antifungal activity of biosynthesized silver nanoparticle. Indian Phytopathol. 72:79-88.
  27. Khairan, K., Zahraturriaz and Jalil, Z. 2019. Green synthesis of sulphur nanoparticles using Aqueous garlic extract (Allium sativum). Rasayan J. Chem. 12:50-57.
  28. Khalil, A. E., Rahhal, M. M. H., El-Korany, A. E. and Balbaa, E. M. 2018. Effect of certain nanoparticles against root-knot nematode, Meloidogyne incognita, affecting, tomato plants in El-Behera governorate, Egypt. J. Agric. Environ. Sci. 17:1-34.
  29. Khalil, M. S. and Badawy, M. E. I. 2012. Nematicidal activity of a biopolymer chitosan at different molecular weights against root-knot nematode, Meloidogyne incognita. Plant Prot. Sci. 48:170-178.
  30. Khan, A., Mfarrej, M. F. B., Danish, M., Shariq, M., Khan, M. F., Ansari, M. S., Hashem, M., Alamri, S. and Ahmad, F. 2022a. Synthesized copper oxide nanoparticles via the green route act as antagonists to pathogenic root-knot nematode, Meloidogyne incognita. Green Chem. Lett. Rev. 15:491-507.
  31. Khan, M., Siddiqui, Z. A., Parveen, A., Khan, A. A., Moon, I. S. and Alam, M. 2022b. Elucidating the role of silicon dioxide and titanium dioxide nanoparticles in mitigating the disease of the eggplant caused by Phomopsis vexans, Ralstonia solanacearum, and root-knot nematode Meloidogyne incognita. Nanotechnol. Rev. 11:1606-1619.
  32. Kim, S., Kim, H. M., Seo, H. J., Yeon, J., Park, A. R., Yu, N. H., Jeong, S.-G., Chang, J. Y., Kim, J.-C. and Park, H. W. 2022. Root-knot nematode (Meloidogyne incognita) control using a combination of Lactiplantibacillus plantarum WiKim0090 and copper sulfate. J. Microbiol. Biotechnol. 32:960-966.
  33. Korthals, G. W., Bongers, T., Kammenga, J. E., Alexiev, A. D. and Lexmond, T. M. 1996. Long-term effects of copper and pH on the nematode community in an agroecosystem. Environ. Toxicol. Chem. 15:979-985.
  34. Krishnaraj, C., Ramachandran, R., Mohan, K. and Kalaichelvan, P. T. 2012. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc. 93:95-99.
  35. Kumar, V., Pandita, S., Sidhu, G. P. S., Sharma, A., Khanna, K., Kaur, P., Bali, A. S. and Setia, R. 2021. Copper bioavailability, uptake, toxicity, and tolerance in plants: a comprehensive review. Chemosphere 262:127810.
  36. Kuppusamy, S. and Karuppaiah, J. 2012. Antioxidant and cytotoxic efficacy of chitosan on bladder cancer. Asian Pac. J. Trop. Dis. 2(Suppl 2):S769-S773.
  37. Li, J. and Zhuang, S. 2020. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Eur. Polym. J. 138:109984.
  38. Makhayeva, D. N., Irmukhametova, G. S. and Khutoryanskiy, V. V. 2020. Polymeric iodophors: preparation, properties, and biomedical applications. Rev. J. Chem. 10:40-57.
  39. Meng, D., Garba, B., Ren, Y., Yao, M., Xia, X., Li, M. and Wang, Y. 2020. Antifungal activity of chitosan against Aspergillus ochraceus and its possible mechanisms of action. Int. J. Biol Macromol. 158:1063-1070.
  40. Mishra, R. K., Ha, S. K., Verma, K. and Tiwari, S. K. 2018. Recent progress in selected bio-nanomaterials and their engineering applications: an overview. J. Sci. Adv. Mater. Devices 3:263-288.
  41. Ngoc, D. T. B., Duy, D. B., Tuan, L. N. A., Thach, B. D., Tho, T. P. and Phu, D. V. 2021. Effect of copper ions concentration on the particle size of alginate-stabilized Cu2O-Cu nanocolloids and its antibacterial activity against rice bacterial leaf blight (Xanthomonas oryzae pv. oryzae). Adv. Nat. Sci. Nanosci. Nanotechnol. 12:013001.
  42. Ogunyemi, S. O., Zhang, M., Abdallah, Y., Ahmed, T., Qiu, W., Ali, M. A., Yan, C., Yang, Y., Chen, J. and Li, B. 2020. The bio-synthesis of three metal oxide nanoparticles (ZnO, MnO2, and MgO) and their antibacterial activity against the bacterial leaf blight pathogen. Front. Microbiol. 11:588326.
  43. Ozdemir, F. G. G., Cevik, H., Ndayiragije, J. C., Ozek, T. and Karaca, I. 2022. Nematicidal effect of chitosan on Meloidogyne incognita in vitro and on tomato in a pot experiment. Int. J. Agric. Environ. Food Sci. 6:410-416.
  44. Paralikar, P. and Rai, M. 2018. Bio-inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity. IET Nanobiotechnol. 12:25-31.
  45. Pasha, A., Kumbhakar, D. V., Sana, S. S., Ravinder, D., Lakshmi, B. V., Kalangi, S. K. and Pawar, S. C. 2022. Role of biosynthesized Ag-NPs using Aspergillus niger (MK503444.1) in antimicrobial, anti-cancer and anti-angiogenic activities. Front. Pharmacol. 12:812474.
  46. Qiu, M., Wu, C., Ren, G., Liang, X., Wang, X. and Huang, J. 2014. Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus. Food Chem. 155:105-111.
  47. Rao, K. J. and Paria, S. 2013. Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv. 3:10471-10478.
  48. Rhazi, M., Desbrieres, J., Tolaimate, A., Rinaudo, M., Vottero, P. and Alagui, A. 2002. Contribution to the study of the complexation of copper by chitosan and oligomers. Polymer 43:1267-1276.
  49. Saedi, S., Shokri, M. and Rhim, J.-W. 2020. Antimicrobial activity of sulfur nanoparticles: effect of preparation methods. Arab. J. Chem. 13:6580-6588.
  50. Shankar, S., Pangeni, R., Park, J. W. and Rhim, J.-W. 2018. Preparation of sulfur nanoparticles and their antibacterial activity and cytotoxic effect. Mater. Sci. Eng. C 92:508-517.
  51. Tomadoni, B., Casalongue, C. and Alvarez, V. A. 2019. Biopolymer-based hydrogels for agriculture applications: swelling behavior and slow release of agrochemicals. In: Polymers for agri-food applications, ed. by T. Gutierrez, pp. 99-125. Springer, Cham, Netherlands.
  52. Tripathi, R. M., Rao, R. P. and Tsuzuki, T. 2018. Green synthesis of sulfur nanoparticles and evaluation of their catalytic detoxification of hexavalent chromium in water. RSC Adv. 8:36345-36352.
  53. Tuan, L. N. A., Du, B. D., Ha, L. D. T., Dzung, L. T. K., Phu, D. V. and Hien, N. Q. 2019. Induction of chitinase and brown spot disease resistance by oligochitosan and nanosilica-oligochitosan in dragon fruit plants. Agric. Res. 8:184-190.
  54. Turganbay, S., Aidarova, S. B., Bekturganova, N. E., Alimbekova, G. K., Musabekov, K. B. and Kumargalieva, S. S. 2013. Surface-modification of sulfur nanoparticles with surfactants and application in agriculture. Adv. Mater. Res. 785-786:475-479.
  55. Udalova, Z. V., Folmanis, G. E., Khasanov, F. K. and Zinovieva, S. V. 2018. Selenium nanoparticles: an inducer of tomato resistance to the root-knot nematode Meloidogyne incognita (Kofoid et White, 1919) Chitwood 1949. Dokl. Biochem. Biophys. 482:264-267.
  56. Wang, X., Du, Y., Fan, L., Liu, H. and Hu, Y. 2005. Chitosan-metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study. Polym. Bull. 55:105-113.
  57. Wang, X., Du, Y. and Liu, H. 2004. Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohydr. Polym. 56:21-26.
  58. Wong, K. K. Y. and Liu, X. 2010. Silver nanoparticles: the real "silver bullet" in clinical medicine? MedChemComm 1:125-131.
  59. Wypij, M., Trzcinska-Wencel, J., Golinska, P., Avila‑Quezada, G. D., Ingle, A. P. and Rai, M. 2023. The strategic applications of natural polymer nanocomposites in food packaging and agriculture: chances, challenges, and consumers' perception. Front. Chem. 10:1106230.
  60. Xie, X.-Y., Li, L.-Y., Zheng, P.-S., Zheng, W.-J., Bai, Y., Cheng, T.-F. and Liu, J. 2012. Facile synthesis, spectral properties and formation mechanism of sulfur nanorods in PEG-200. Mater. Res. Bull. 47:3665-3669.
  61. Yuan, H., Liu, Q., Guo, Z., Fu, J., Sun, Y., Gu, C., Xing, B. and Dhankher, O. P. 2021. Sulfur nanoparticles improved plant growth and reduced mercury toxicity via mitigating the oxidative stress in Brassica napus L. J. Cleaner Prod. 318:128589.
  62. Zhi-Hui, Y., Stoven, K., Haneklaus, S., Singh, B. R. and Schnug, E. 2010. Elemental sulfur oxidation by Thiobacillus spp. and aerobic heterotrophic sulfur-oxidizing bacteria. Pedosphere 20:71-79.