• Title/Summary/Keyword: nano $SiO_2$

Search Result 576, Processing Time 0.027 seconds

Selective growth of GaN nanorods on the top of GaN stripes (GaN stripe 꼭지점 위의 GaN 나노로드의 선택적 성장)

  • Yu, Yeonsu;Lee, Junhyeong;Ahn, Hyungsoo;Shin, Kisam;He, Yincheng;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • GaN nanorods were grown on the apex of GaN stripes by three dimensional selective growth method. $SiO_2$ mask was partially removed only on the apex area of the GaN stripes by an optimized photolithography for the selective growth. Metallic Au was deposited only on the apex of the GaN stripes and a selective growth of GaN nanorods was followed by a metal organic vapor phase epitaxy (MOVPE). We confirmed that the shape and size of the GaN nanorods depend on growth temperature and flow rates of group III precursor. GaN nanorods were grown having a taper shape which have sharp tip and triangle-shaped cross section. From the TEM result, we confirmed that threading dislocations were rarely observed in GaN nanorods because of the very small contact area for the selective growth. Stacking faults which might be originated from a difference of the crystal facet directions between the GaN stripe and the GaN nanorods were observed in the center area of the GaN nanorods.

Facile Fabrication Process for Graphene Nanoribbon Using Nano-Imprint Lithography(NIL) and Application of Graphene Pattern on Flexible Substrate by Transfer Printing of Silicon Membrane (나노임프린트 리소그래피 기술을 이용한 그래핀 나노리본 트랜지스터 제조 및 그래핀 전극을 활용한 실리콘 트랜지스터 응용)

  • Eom, Seong Un;Kang, Seok Hee;Hong, Suck Won
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.635-643
    • /
    • 2016
  • Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped $Si/SiO_2$ substrate. Consequently, we observed an enhancement of the performance of the GNR-transistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.

Highly-conformal Ru Thin Films by Atomic Layer Deposition Using Novel Zero-valent Ru Metallorganic Precursors and $O_2$ for Nano-scale Devices

  • Kim, Su-Hyeon
    • Electrical & Electronic Materials
    • /
    • v.28 no.2
    • /
    • pp.25-33
    • /
    • 2015
  • Ruthenium (Ru) thin films were grown on thermally-grown $SiO_2$ substrates by atomic layer deposition (ALD) using a sequential supply of four kinds of novel zero-valent Ru precursors, isopropyl-methylbenzene-cyclohexadiene Ru(0) (IMBCHDRu, $C_{16}H_{22}Ru$), ethylbenzen-cyclohexadiene Ru(0) (EBCHDRu, $C_{14}H_{18}Ru$), ethylbenzen-ethyl-cyclohexadiene Ru(0) (EBECHDRu, $C_{16}H_{22}Ru$), and (ethylbenzene)(1,3-butadiene)Ru(0) (EBBDRu, $C_{12}H_{16}Ru$) and molecular oxygen (O2) as a reactant at substrate temperatures ranging from 140 to $350^{\circ}C$. It was shown that little incubation cycles were observed for ALD-Ru processes using these new novel zero-valent Ru precursors, indicating of the improved nucleation as compared to the use of typical higher-valent Ru precursors such as cyclopentadienyl-based Ru (II) or ${\beta}$-diketonate Ru (III) metallorganic precursors. It was also shown that Ru nuclei were formed after very short cycles (only 3 ALD cycles) and the maximum nuclei densities were almost 2 order of magnitude higher than that obtained using higher-valent Ru precursors. The step coverage of ALD-Ru was excellent, around 100% at on a hole-type contact with an ultra-high aspect ratio (~32) and ultra-small trench with an aspect ratio of ~ 4.5 (top-opening diameter: ~ 25 nm). The developed ALD-Ru film was successfully used as a seed layer for Cu electroplating.

  • PDF

Raman Spectroscopy Analysis of Graphene Films Grown on Ni (111) and (100) Surface (니켈 (111)과 (100) 결정면에서 성장한 그래핀에 대한 라만 스펙트럼 분석)

  • Jung, Daesung;Jeon, Cheolho;Song, Wooseok;An, Ki-Seok;Park, Chong-Yun
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.194-202
    • /
    • 2016
  • A graphene film, two-dimensional carbon sheet, is a promising material for future electronic devices and so on. In graphene applications, the effect of substrate on the atomic/electronic structures of graphene is significant, so we studied an interaction between graphene film and substrate. To study the effect, we investigated the graphene films grown on Ni substrate with two crystal face of (111) and (100) by Raman spectroscopy, comparing with graphene films transferred on $SiO_2/Si$ substrate. In our study, the doping effect caused by charge transfer from Ni or $SiO_2/Si$ substrate to graphene was not observed. The bonding force between graphene and Ni substrate is stronger than that between graphene and $SiO_2/Si$. The graphene films grown on Ni substrate showed compressive strain and the growth of graphene films is incommensurate with Ni (100) lattice. The position of 2D band of graphene synthesized on Ni (111) and (100) substrate was different, and this result will be studied in the near future.

Solution Processable Symmetric 4-Alkylethynylbenzene End-Capped Anthracene Derivatives

  • Jang, Sang-Hun;Kim, Hyun-Jin;Hwang, Min-Ji;Jeong, Eun-Bin;Yun, Hui-Jun;Lee, Dong-Hoon;Kim, Yun-Hi;Park, Chan-Eon;Yoon, Yong-Jin;Kwon, Soon-Ki;Lee, Sang-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.541-548
    • /
    • 2012
  • New candidates composed of anthracene and 4-alkylethynylbenzene end-capped oligomers for OTFTs were synthesized under Sonogashira coupling reaction conditions. All oligomers were characterized by FT-IR, mass, UV-visible, and PL emission spectrum analyses, cyclic voltammetry (CV), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), $^1H$-NMR, and $^{13}C$-NMR. Investigation of their physical properties showed that the oligomers had high oxidation potential and thermal stability. Thin films of DHPEAnt and DDPEAnt were characterized by spin coating them onto Si/$SiO_2$ to fabricate top-contact OTFTs. The devices prepared using DHPEAnt and DDPEAnt showed hole field-effect mobilities of $4.0{\times}10^{-3}cm^2$/Vs and $2.0{\times}10^{-3}cm^2$/Vs, respectively, for solution-processed OTFTs.

Fabrication and Properties of the SiC Candle Filter by Vacuum Extrusion and Ramming Process (진공 압출성형 및 래밍성형 공정에 의한 탄화규소 캔들 필터 제조 및 특성)

  • Shin, Myung-Kwan;Han, In-Sub;Seo, Doo-Won;Kim, Se-Young;Woo, Sang-Kuk;Lee, Seoung-Won;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.662-667
    • /
    • 2009
  • Porous SiC candle filter preforms were fabricated by extrusion and ramming process. To fabricate SiC candle filter preform, commercially available 85 ${\mu}m\;{\alpha}-$-SiC powder and 44 ${\mu}m$ mullite, CaC$O_3$ powder were used as the starting materials. The candle type preforms were fabricated by vacuum extrusion and ramming process, and sintered at $1400{^{\circ}C}$ 2 h in air atmosphere. The effect of forming method on porosity, density, strength (flexural and compressive strength) and microstructure was investigated. Also, corrosion test of the sintered candle filter specimens as forming method was performed at $600{^{\circ}C}$ in IGCC syngas atmosphere. The sintered SiC filter which was formed by ramming process has more higher density and exhibit higher strength than extruded filter. Its maximum density and 3-point bending strength were 2.00 g/$cm^3$ and 45 MPa, respectively.

The Dry Etching of TiN Thin Films Using Inductively Coupled CF4/Ar Plasma

  • Woo, Jong-Chang;Choi, Chang-Auck;Joo, Young-Hee;Kim, Han-Soo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.67-70
    • /
    • 2013
  • In this study, we changed the input parameters (gas mixing ratio, RF power, DC bias voltage, and process pressure), and then monitored the effect on TiN etch rate and selectivity with $SiO_2$. When the RF power, DC-bias voltage, and process pressure were fixed at 700 W, - 150 V, and 15 mTorr, the etch rate of TiN increased with increasing $CF_4$ content from 0 to 20 % in $CF_4$/Ar plasma. The TiN etch rate reached maximum at 20% $CF_4$ addition. As RF power, DC bias voltage, and process pressure increased, all ranges of etch rates for TiN thin films showed increasing trends. The analysis of x-ray photoelectron spectroscopy (XPS) was carried out to investigate the chemical reactions between the surfaces of TiN and etch species. Based on experimental data, ion-assisted chemical etching was proposed as the main etch mechanism for TiN thin films in $CF_4$/Ar plasma.

Synthesis and Characterization of Methyltriphenylsilane for SiOC(-H) Thin Film (SiOC(-H) 박막 제조용 Methyltriphenylsilane 전구체 합성 및 특성분석)

  • Han, Doug-Young;Park Klepeis, Jae-Hyun;Lee, Yoon-Joo;Lee, Jung-Hyun;Kim, Soo-Ryong;Kim, Young-Hee
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.600-605
    • /
    • 2010
  • In order to meet the requirements of faster speed and higher packing density for devices in the field of semiconductor manufacturing, the development of Cu/Low k device material is explored for use in multi-layer interconnection. SiOC(-H) thin films containing alkylgroup are considered the most promising among all the other low k candidate materials for Cu interconnection, which materials are intended to replace conventional Al wiring. Their promising character is due to their thermal and mechanical properties, which are superior to those of organic materials such as porous $SiO_2$, SiOF, polyimides, and poly (arylene ether). SiOC(-H) thin films containing alkylgroup are generally prepared by PECVD method using trimethoxysilane as precursor. Nano voids in the film originating from the sterichindrance of alkylgroup lower the dielectric constant of the film. In this study, methyltriphenylsilane containing bulky substitute was prepared and characterized by using NMR, single-crystal X-ray, GC-MS, GPC, FT-IR and TGA analyses. Solid-state NMR is utilized to investigate the insoluble samples and the chemical shift of $^{29}Si$. X-ray single crystal results confirm that methyltriphenylsilane is composed of one Si molecule, three phenyl rings and one methyl molecule. When methyltriphenylsilane decomposes, it produces radicals such as phenyl, diphenyl, phenylsilane, diphenylsilane, triphenylsilane, etc. From the analytical data, methyltriphenylsilane was found to be very efficient as a CVD or PECVD precursor.

Properties of Organic-Inorganic Protective Films on Flexible Plastic Substrates by Spray Coating Method (연성 플라스틱 기판위에 스프레이 코팅방법으로 제조한 유·무기 보호막의 특성)

  • Lee, Sang Hee;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.79-84
    • /
    • 2017
  • The solar cells should be protected from the moisture and oxygen in order to sustain the properties and reliability of the devices. In this research, we prepared the protection films on the flexible plastic substrates by spray coating method using organic-inorganic hybrid solutions. The protection characteristics were studied depending on the various process conditions (nozzle distance, thicknesses of the coatings, film structures). The organic-inorganic solutions for the protection film layer were synthesized by addition of $Al_2O_3$ ($P.S+Al_2O_3$) and $SiO_2$ ($P.S+SiO_2$) nano-powders into PVA (polyvinyl alcohol) and SA (sodium alginate) (P.S) organic solution. The optical transmittances of the protection film with the thicknesses of $5{\mu}m$ showed 91%. The optical transmittance decreased from 81.6% to 73.6% with the film thickness increased from $78{\mu}m$ to $178{\mu}m$. In addition, the protective films were prepared on the PEN (polyethylene naphthalate), PC (polycarbonate) single plastic substrates as well as the Acrylate film coated on PC substrate (Acrylate film/PC double layer), and $Al_2O_3$ film coated on PEN substrate ($Al_2O_3$ film/PEN double layer) using the $P.S+Al_2O_3$ organic-inorganic hybrid solutions. The optimum protection film structure was studied by means of the measurements of water vapor transmittance rate (WVTR) and surface morphology. The protective film on PEN/$Al_2O_3$ double layer substrate showed the best water protective property, indicating the WVTR value of $0.004gm/m^2-day$.

Thermal Degradation Analyses of Epoxy-Silica Nano Composites (에폭시-실리카 나노 복합소재의 열화 특성 및 거동 분석)

  • Jang, Seo-Hyun;Han, Yusu;Hwang, Do Soon;Jung, Joo Won;Kim, Yeong K.
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.268-274
    • /
    • 2020
  • This paper analyzed the degradation behaviors of silica nano epoxy composite based on the isoconversional method. The size of the silica nano particle was about 12 nm and the particles were mixed by three different weight ratios to make the degradation test samples. The thermogravimetric analyses were performed under six different temperature increase rates to measure the weight changes. Four different methods, Friedman, Flynn-Wall-Ozawa, Kissinger and DAEM (Distributed Activation Energy Method), were employed to calculate the activation energies depending on the conversion ratios, and their calculation results were compared. The results represented that the activation energy was increased when the silica nano particles were mixed up to 10%, indicating the definite contribution of the particles to the degradation behavior enhancements. However, the enhancement was not proportional to the particle mixture ratio by demonstrating the similar activation energies between 10% and 18% samples. The calculation results by the different methods were also compared and discussed.