• Title/Summary/Keyword: nNOS

Search Result 381, Processing Time 0.029 seconds

Involvement of Nitric Oxide and Prostanoid on Photorelaxation in Pig Renal Artery (UV-light 에 의한 혈관 이완작용에 있어서 nitric oxide와 prostanoid의 관련성)

  • Kim, Joo-Heon;Shim, Cheol-Soo;Jeon, Seok-Cheol
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.3
    • /
    • pp.321-326
    • /
    • 2002
  • The effect of nitric oxide synthase(NOS) inhibita, $N^G$-nitro-L-arginine-methyl ester(L-NAME) and prostanoid synthesis inhibiter, indomethacin on the photorelaxation, when was exposed to the long-wave length UV-light, was examined on the precontraction by the phenylephrine in the isolated pig renal artery. 1. UV-light relaxed both with-endothelium and without-endothelium in the pig renal arterial ring contracted by the phenylephrine. The magnitude of photorelaxation was dependent on the exposure time for UV-light. 2. UV-Iight induced relaxation was inhibited by L-NAME and indomethacin on the precontraction by the phenylephrine in the isolated pig renal artery. 3. UV-Iight induced relaxation was inhibited by methylene blue on the precontraction by the phenylephrine in the isolated pig renal artery. These results suggest that UV-light induced photorelaxation may be due to cGMP involved both nitric oxide and prostanoid on the precontraction by the phenylephrine in the isolated pig renal artery.

Effect of Lespedezea Cuneata on the Contraction of Rabbit Common Carotid Artery and Corpus Cavernosum (야관문(夜關門)이 토끼의 혈관과 음경해면체 수축에 미치는 영향)

  • Park, Sun Young;Kim, Ho Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.809-817
    • /
    • 2013
  • The aim of this study was to evaluate the mechanism of vasodilation of Lespedezea cuneata(LC) in rabbit common carotid artery and cavernosal smooth muscle. LC relaxed arterial strips precontracted with norepinephrine and cavernosal strips precontracted with phenylephrine. The arterial relaxation effects of LC was endothelium-dependent. $N{\omega}$-nitro-L-arginine(L-NNA), NOS inhibitor, methylene blue(MB), cGMP inhibitor, indomethacin(IM), cyclo-oxygenase inhibitor and tetraethylammonium chloride(TEA), KCa-channel blocker attenuate the relaxation responses of LC in arterial strips. In $Ca^{2+}$-free krebs-ringer solution, pretreatment of LC extract significantly reduced the contraction induced by addition $Ca^{2+}$. L-NNA reduced LC extract-induced relaxation in cavernosal strips, but IM, TEA and MB didn't affect LC extract-induced relaxation. When LC extract was applicated on human umbilical vein endothelial cell, the nitric oxide concentration was increased. We conclude that in rabbit common carotid artery, LC may suppress influx of extra-cellular $Ca^{2+}$ through the release of endothelium derived relaxing factor including nitric oxide, prostacyclin, endothelium derived hyperpolarizing factor. And LC exerts a relaxing effect on corpus cavernosum through activating the NO.

The pepsinolytic hydrolysate from Johnius belengerii frame inhibited LPS-stimulated production of pro-inflammatory mediators via the inactivating of JNK and NF-κB pathways in RAW 264.7 macrophages

  • Heo, Seong-Yeong;Ko, Seok-Chun;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.5
    • /
    • pp.14.1-14.8
    • /
    • 2018
  • The objective of this study was to investigate the anti-inflammatory effects of the pepsinolytic hydrolysate from the fish frame, Johnius belengerii, on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The J. belengerii frame hydrolysate (JFH) significantly suppressed nitric oxide (NO) secretion on LPS-stimulated RAW264.7 macrophages. Moreover, the JFH markedly inhibited the levels of protein and mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, the LPS-stimulated mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 was downregulated when cells were cultured with the JFH. The JFH significantly reduced the phosphorylation of c-Jun N-terminal kinase (JNK) and the translocation of nuclear factor-kappa B ($NF-{\kappa}B$) in macrophages. As the result, the JFH has the potential anti-inflammatory activity via blocking the JNK and $NF-{\kappa}B$ signal pathways.

Reconsideration of Classical Antibiotic Lincomycin: Anti-inflammatory Effect in LPS-stimulated RAW 264.7 Cells

  • Yang, Eun-Jin;Lee, Nari;Hyun, Chang-Gu
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.366-372
    • /
    • 2020
  • Since, side effects of antibiotics are frequently emphasized these days, their use is gradually diminishing, and alternative drugs are being developed. We have sought to reintroduce them as raw materials for human health as conventional 'weapons' that have been retired after their historical duties. In this study, we investigated the anti-inflammatory effects of lincomycin (LIN), on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Our findings show that LIN potently inhibited production of LPS-induced proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), without cytotoxicity. Consistent with these findings, LIN strongly decreased protein expression levels of inducible NO synthase (iNOS) and cyclooxygenase (COX-2). Furthermore, LIN reduced pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. To further elucidate the mechanisms of these inhibitory effects of LIN, we studied LPS-induced IκB-α degradation, and mitogen-activated protein kinase (MAPK) phosphorylation. LIN suppressed downregulation of inhibitory κB (IκB-α) degradation, and the phosphorylation of the c-Jun N-terminal kinase (JNK) pathway. Based on these results, we suggest that LIN may be considered a potential candidate as an anti-inflammatory cosmetic or a medicine for human health.

Roles of Nitric Oxide in Vestibular Compensation

  • Jeong, Han-Seong;Jun, Jae-Yeoul;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.73-77
    • /
    • 2003
  • The effects of nitric oxide on the vestibular function recovery following unilateral labyrinthectomy (UL) were studied. Sprague-Dawley male rats, treated with nitric oxide liberating agent sodium nitroprusside (SNP) and NOS inhibitor $N^G$-nitro-L-arginine methyl ester (L-NAME), were subjected to destruction of the unilateral vestibular apparatus, and then spontaneous nystagmus was observed in the rat. To explore the effects of nitric oxide on the neuronal excitability, whole cell patch clamp technique was applied on isolated medial vestibular nuclear neurons. The frequency of spontaneous nystagmus in SNP treated rats was lesser than that of spontaneous nystagmus in control animals. In contrast, pre-UL treatment with L-NAME resulted in a significant increase in spontaneous nystagmus frequency. In addition, SNP increased the frequency of spontaneous action potential in isolated medial vestibular nuclear neurons. Potassium currents of the vestibular nuclear neurons were inhibited by SNP. After blockade of calcium dependent potassium currents by high EGTA (11 mM) in a pipette solution, SNP did not inhibit outward potassium currents. 1H-[1,2,4] oxadiazolo [4,3-a] quinozalin-1-one (ODQ), a specific inhibitor of soluble guanylyl cyclase, inhibited the effects of SNP on the spontaneous firing and the potassium current. These results suggest that nitric oxide after unilateral labyrinthectomy would help to facilitate vestibular compensation by inhibiting calcium-dependent potassium currents through increasing intracellular cGMP, and consequently would increase excitability in ipsilateral vestibular nuclear neurons.

Inhibitory Action of the Ginseng Total Saponin on the Nalbuphine-Induced Tolerance and Withdrawal Syndrome

  • Kim, Dong-Hyun;Yoo, Hwan-Soo;Jang, Choon-Gon;Kang, Jong-Seok;Kim, Dong-Sup;Choi, Ki-Hwan;Jang, So-Yong;Oh, Sei-Kwan
    • Journal of Ginseng Research
    • /
    • v.29 no.2
    • /
    • pp.86-93
    • /
    • 2005
  • This study was undertaken to determine the antagonism of the ginseng total saponin (GTS) on the development of nalbuphine-induced tolerance and physical dependence. GTS is blown to have antinarcotic action with a dose of 100mg/kg (i.p.) in rats. STS significantly inhibits the development of nalbuphine-induced physical dependence as well as the tolerance. The level of pCREB was elevated in the striatum by the chronic treatment with nalbuphine or GTS, how-ever, the elevation of pCREB was inhibited by the GTS co-treatment. It has been suggested that NMDA receptor and/or NO is involved in the penomena of opioid dependence and withdrawal. However, the level of nNOS and NR1 was not modulated by the treatment with nalbuphine or GTS on the cortex, hippocampus and striatum in the rat brain. These results suggest that the GTS could be used to ameliorate the nalbuphine tolerance and withdrawal symptoms.

NSA9, a human prothrombin kringle-2-derived peptide, acts as an inhibitor of kringle-2-induced activation in EOC2 microglia

  • Kim, Ji-Yeon;Kim, Tae-Hyong;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.380-386
    • /
    • 2009
  • In neurodegenerative diseases, such as Alzheimer' and Parkinson', microglial cell activation is thought to contribute to CNS injury by producing neurotoxic compounds. Prothrombin and kringle-2 increase levels of NO and the mRNA expression of iNOS, IL-1$\beta$, and TNF-$\alpha$ in microglial cells. In contrast, the human prothrombin kringle-2 derived peptide NSA9 inhibits NO release and the production of pro-inflammatory cytokines such as IL-1$\beta$, TNF-$\alpha$, and IL-6 in LPS-activated EOC2 microglia. In this study, we investigated the anti-inflammatory effects of NSA9 in human prothrombin- and kringle-2-stimulated EOC2 microglia. Treatment with 20-100 ${\mu}M$ of NSA9 attenuated both prothrombin- and kringle-2-induced microglial activation. NO production induced by MAPKs and NF-$\kappa$B was similarly reduced by inhibitors of ERK (PD98059), p38 (SB203580), NF-$\kappa$B (N-acetylcysteine), and NSA9. These results suggest that NSA9 acts independently as an inhibitor of microglial activation and that its effects in EOC2 microglia are not influenced by the presence of kringle-2.

High molecular weight water-soluble chitosan acts as an accelerator of macrophages activation by recombinant interferon ${\gamma}$ via a process involving $_L$-arginine -dependent nitric oxide production

  • Kim, Hyung-Min
    • Advances in Traditional Medicine
    • /
    • v.1 no.1
    • /
    • pp.71-81
    • /
    • 2000
  • High molecular weight water-insoluble chitosan alone has been previously shown to exhibit in vitro stimulatory effect on macrophages nitric oxide (NO) production. However, high molecular weight water-soluble chitosan (WSC) had no effect on NO production by itself. When WSC was used in combination with recombinant $interferon-{\gamma}\;(Rifn-{\gamma})$, there was a marked cooperative induction of NO synthesis in a dose-dependent manner. The optimal effect of WSC on NO synthesis was shown at 24 h after treatment with $rIFN-{\gamma}$. The increased production of NO from $rIFN-{\gamma}$ plus WSC-stimulated RAW 264.7 macrophages was decreased by the treatment with $N^G$ $monomethyl-_L-arginine$. The increase in NO synthesis was reflected, as an increased amounts of inducible NO synthase (iNOS) protein. Synergy between $rIFN-{\gamma}$ and WSC was mainly dependent on WSC-induced nuclear $factor-_KB$ activation. The present results indicate that WSC may provide various activities such as anti-microbial, anti-tumoral, and anti-viral. In addition, since NO has emerged as an important intracellular and intercellular regulatory molecule having functions as diverse as vasodilation, neural communication, cell growth regulation and host defense, it is tempting to hypothesize that this WSC is involved in the local control of the various fundamental processes such as cardiagra, cardiac infarction, impotence etc.

  • PDF

Biphasic Effects of Nitric Oxide in Liver Toxicity (간장독성에서 니트릭 옥시드의 양면적 효과)

  • Park, Chang-Won;Cho, Dae-Hyun;Hong, Sung-Youl;Han, Jeung-Whan;Lee, Hyang-Woo
    • YAKHAK HOEJI
    • /
    • v.42 no.6
    • /
    • pp.598-606
    • /
    • 1998
  • The liver expresses a considerable amount of nitric oxide (NO) upon induction with cytokines or/and endotoxin. The NO synthesized by inducible NO synthase (NOS) of the liver see ms to play a role in various hepatic physiological processes. Here we investigate the effects of NO on acetaminophen (AA)-induced liver injury. The treatment of S-nitros-N-acetyl penicillamine (SNAP, exogenous NO donor) at the dose of 0.1mM decreased AA-induced hepatotoxicity suggesting the possibility of NO to play a role in protection from the hepatotoxicity induced by AA. On the other hand, the excessive NO produced by NO donor (SNAP: 0.5, 2.5, 6.25mM) has been shown to cause a concentration dependent hepatotoxicity, and such damages was decreased by Superoxide and increased by superoxide dismutase, indicating that the hepatotoxicity induced by excessive NO depends on balancing between NO and superoxide. Taken together, the results indicate that NO has biphasic effects on hepatotoxicity.

  • PDF

Effect of Ginseng Saponin on Hypothalamus-Pituitary- Adrenal Axis under Stress in Mice

  • Do Hoon Kim;Jun
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.83-89
    • /
    • 1998
  • Ginseng total saponins (GTS) injected intracerebroventricularly (i.c.v.) at doses from 0.1-1 vs inhibited the i.c.v. injection stress-induced plasma corticosterone levels in mice. The inhibitory action of GTS was blocked by co-administered NG-nitro-L-arginine methyl ester (L-NAME; 1.5 us, i.c.v.), an. inhibitor of nitric oxide synthase (NOS). Of the ginsenosides Rbl, Rba, Rc, Rd, Re, Rf, Rgl,20(S)-Rg3, and 20(R)-Rg3 injected i.c.v. at doses from 0.01 to 0.3ug(or 1 uE),20(5)-Rg3 and Rc significantly inhibited the o.c.v. injection stress-induced Plasma corticosterone levels. The inhibitory actions of 20(S)-Rg3 and Rc were blocked by co-administered L-NAME (1.5 n, i.c.v.). These results suggest that G75, 20(S)-Rg3 and Rc may inhibit the i.c.v. injection stress-induced hypothalamo-pituitary-adrenal response by inducing NO production in the brain.

  • PDF