• 제목/요약/키워드: n-normed space

검색결과 36건 처리시간 0.031초

STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS IN RANDOM NORMED SPACES

  • Schin, Seung Won;Ki, DoHyeong;Chang, JaeWon;Kim, Min June;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • 제18권4호
    • /
    • pp.395-407
    • /
    • 2010
  • In this paper, we prove the generalized Hyers-Ulam stability of the following quadratic functional equations $$cf\(\sum_{i=1}^{n}x_i\)+\sum_{j=2}^{n}f\(\sum_{i=1}^{n}x_i-(n+c-1)x_j\)\\=(n+c-1)\(f(x_1)+c\sum_{i=2}^{n}f(x_i)+\sum_{i<j,j=3}^{n}\(\sum_{i=2}^{n-1}f(x_i-x_j\)\),\\Q\(\sum_{i=1}^{n}d_ix_i\)+\sum_{1{\leq}i<j{\leq}n}d_id_jQ(x_i-x_j)=\(\sum_{i=1}^{n}d_i\)\(\sum_{i=1}^{n}d_iQ(x_i)\)$$ in random normed spaces.

SOME RESULTS ON FUZZY BANACH SPACES

  • SAADATI R.;VAEZPOUR S. M.
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.475-484
    • /
    • 2005
  • The main aim of this paper is to consider the fuzzy norm, define the fuzzy Banach spaces, its quotients and prove some theoremes and in particular Open mapping and Closed graph theoremes on these spaces.

Some Difference Paranormed Sequence Spaces over n-normed Spaces Defined by a Musielak-Orlicz Function

  • Raj, Kuldip;Sharma, Sunil K.;Gupta, Amit
    • Kyungpook Mathematical Journal
    • /
    • 제54권1호
    • /
    • pp.73-86
    • /
    • 2014
  • In the present paper we introduce difference paranormed sequence spaces $c_0(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$, $c(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$ and $l_{\infty}(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$ defined by a Musielak-Orlicz function $\mathcal{M}$ = $(M_k)$ over n-normed spaces. We also study some topological properties and some inclusion relations between these spaces.

CONE ℭ-CLASS FUNCTIONS USING (CLRΓ𝔏)-PROPERTY ON CONE b-NORMED SPACES WITH APPLICATION

  • K. Maheshwaran;Arslan Hojat Ansari;Stojan N Radenovic;M.S. Khan;Yumnam Mahendra Singh
    • Korean Journal of Mathematics
    • /
    • 제32권3호
    • /
    • pp.561-591
    • /
    • 2024
  • In this article, we demonstrate the conditions for the existence of common fixed points (CFP) theorems for four self-maps satisfying the common limit range (CLR)-property on cone b-normed spaces (CbNS) via ℭ-class functions. Furthermore, we have a unique common fixed point for two weakly compatible (WC) pairings. Towards the end, the existence and uniqueness of common solutions for systems of functional equations arising in dynamic programming are discussed as an application of our main result.

THE CONVERGENCE OF FINITE ELEMENT GALERKIN SOLUTION FOR THE ROSENEAU EQUATION

  • Lee, H. Y.
    • Journal of applied mathematics & informatics
    • /
    • 제5권1호
    • /
    • pp.171-180
    • /
    • 1998
  • In this paper we analyze the convergence of the semidis-crete solution of the Roseneau equation. We introduce the auxiliary projection of the solution and derive the optimal convergence of the semidiscrete solution as well as the auxiliary projection in L2 normed space.

ON DISTANCE-PRESERVING MAPPINGS

  • Jung, Soon-Mo;M.Rassias, Themistocles
    • 대한수학회지
    • /
    • 제41권4호
    • /
    • pp.667-680
    • /
    • 2004
  • We generalize a theorem of W. Benz by proving the following result: Let $H_{\theta}$ be a half space of a real Hilbert space with dimension $\geq$ 3 and let Y be a real normed space which is strictly convex. If a distance $\rho$ > 0 is contractive and another distance N$\rho$ (N $\geq$ 2) is extensive by a mapping f : $H_{\theta}$ \longrightarrow Y, then the restriction f│$_{\theta}$ $H_{+}$$\rho$/2// is an isometry, where $H_{\theta}$$\rho$/2/ is also a half space which is a proper subset of $H_{\theta}$. Applying the above result, we also generalize a classical theorem of Beckman and Quarles.

BOHR'S INEQUALITIES IN n-INNER PRODUCT SPACES

  • Cheung, W.S.;Cho, Y.S.;Pecaric, J.;Zhao, D.D.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제14권2호
    • /
    • pp.127-137
    • /
    • 2007
  • The classical Bohr's inequality states that $|z+w|^2{\leq}p|z|^2+q|w|^2$ for all $z,\;w{\in}\mathbb{C}$ and all p, q>1 with $\frac{1}{p}+\frac{1}{q}=1$. In this paper, Bohr's inequality is generalized to the setting of n-inner product spaces for all positive conjugate exponents $p,\;q{\in}\mathbb{R}$. In. In particular, the parallelogram law is recovered and an interesting operator inequality is obtained.

  • PDF

One-sided best simultaneous $L_1$-approximation for a compact set

  • Park, Sung-Ho;Rhee, Hyang-Joo
    • 대한수학회보
    • /
    • 제35권1호
    • /
    • pp.127-140
    • /
    • 1998
  • In this paper, we discuss the characterizations and uniqueness of a one-sided best simultaneous approximation for a compact subset from a convex subset of a finite-dimensional subspace of a normed linear space $C_1(X)$. The motivation is furnished by the characterizations of the one-sided best simultaneous approximations for a finite subset ${f_1, \ldots, f_\ell}$ for any $\ell \in N$.

  • PDF

STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION IN QUASI NORMED SPACES

  • Mirmostafaee, Alireza Kamel
    • 대한수학회보
    • /
    • 제47권4호
    • /
    • pp.777-785
    • /
    • 2010
  • Let X be a linear space and Y be a complete quasi p-norm space. We will show that for each function f : X $\rightarrow$ Y, which satisfies the inequality ${\parallel}{\Delta}_x^nf(y)\;-\;n!f(x){\parallel}\;{\leq}\;\varphi(x,y)$ for suitable control function $\varphi$, there is a unique monomial function M of degree n which is a good approximation for f in such a way that the continuity of $t\;{\mapsto}\;f(tx)$ and $t\;{\mapsto}\;\varphi(tx,\;ty)$ imply the continuity of $t\;{\mapsto}\;M(tx)$.

ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

  • YUN, SUNGSIK;LEE, JUNG RYE;SHIN, DONG YUN
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제23권3호
    • /
    • pp.247-263
    • /
    • 2016
  • Let $M_{1}f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}f(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$, $M_{2}f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$. Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities (0.1) $N(M_{1}f(x,y),t){\geq}N({\rho}M_{2}f(x,y),t)$ where ρ is a fixed real number with |ρ| < 1, and (0.2) $N(M_{2}f(x,y),t){\geq}N({\rho}M_{1}f(x,y),t)$ where ρ is a fixed real number with |ρ| < $\frac{1}{2}$.