• Title/Summary/Keyword: n-normed space

Search Result 36, Processing Time 0.024 seconds

ISHIKAWA AND MANN ITERATIVE PROCESSES WITH ERRORS FOR NONLINEAR $\Phi$-STRONGLY QUASI-ACCRETIVE MAPPINGS IN NORMED LINEAR SPACES

  • Zhou, H.Y.;Cho, Y.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1061-1073
    • /
    • 1999
  • Let X be a real normed linear space. Let T : D(T) ⊂ X \longrightarrow X be a uniformly continuous and ∮-strongly quasi-accretive mapping. Let {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} be two real sequences in [0, 1] satisfying the following conditions: (ⅰ) ${\alpha}$n \longrightarrow0, ${\beta}$n \longrightarrow0, as n \longrightarrow$\infty$ (ⅱ) {{{{ SUM from { { n}=0} to inf }}}} ${\alpha}$=$\infty$. Set Sx=x-Tx for all x $\in$D(T). Assume that {u}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and {v}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} are two sequences in D(T) satisfying {{{{ SUM from { { n}=0} to inf }}}}∥un∥<$\infty$ and vn\longrightarrow0 as n\longrightarrow$\infty$. Suppose that, for any given x0$\in$X, the Ishikawa type iteration sequence {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} with errors defined by (IS)1 xn+1=(1-${\alpha}$n)xn+${\alpha}$nSyn+un, yn=(1-${\beta}$n)x+${\beta}$nSxn+vn for all n=0, 1, 2 … is well-defined. we prove that {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} converges strongly to the unique zero of T if and only if {Syn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} is bounded. Several related results deal with iterative approximations of fixed points of ∮-hemicontractions by the ishikawa iteration with errors in a normed linear space. Certain conditions on the iterative parameters {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and t are also given which guarantee the strong convergence of the iteration processes.

  • PDF

A WEAK COMMON FIXED POINT THEOREM IN NORMED ALMOST LINEAR SPACES

  • Lee, Sang-Han
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.573-581
    • /
    • 1997
  • In this paper we prove a weak common fixed point theo-rem in a normed almost linear space which is different from the result of S. P. Singh and B.A. Meade [9]. However for a Banach X our theorem is equal to the result of S. P. Singh and B. A. Meade.

ON STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION WITH n-VARIABLES AND m-COMBINATIONS IN QUASI-𝛽-NORMED SPACES

  • Koh, Heejeong;Lee, Yonghoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.319-326
    • /
    • 2020
  • In this paper, we establish a general solution of the following functional equation $$mf\({\sum\limits_{k=1}^{n}}x_k\)+{\sum\limits_{t=1}^{m}}f\({\sum\limits_{k=1}^{n-i_t}}x_k-{\sum\limits_{k=n-i_t+1}^{n}}x_k\)=2{\sum\limits_{t=1}^{m}}\(f\({\sum\limits_{k=1}^{n-i_t}}x_k\)+f\({\sum\limits_{k=n-i_t+1}^{n}}x_k\)\)$$ where m, n, t, it ∈ ℕ such that 1 ≤ t ≤ m < n. Also, we study Hyers-Ulam-Rassias stability for the generalized quadratic functional equation with n-variables and m-combinations form in quasi-𝛽-normed spaces and then we investigate its application.

A NOTE ON GREEDY ALGORITHM

  • Hahm, Nahm-Woo;Hong, Bum-Il
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.293-302
    • /
    • 2001
  • We improve the greedy algorithm which is one of the general convergence criterion for certain iterative sequence in a given space by building a constructive greedy algorithm on a normed linear space using an arithmetic average of elements. We also show the degree of approximation order is still $Ο(1\sqrt{\n}$) by a bounded linear functional defined on a bounded subset of a normed linear space which offers a good approximation method for neural networks.

  • PDF

ON THE STABILITY OF THE QUADRATIC-ADDITIVE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES VIA FIXED POINT METHOD

  • Jin, Sun Sook;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.201-215
    • /
    • 2012
  • In this paper, we prove the stability in random normed spaces via fixed point method for the functional equation $f(x+y+z+w)\;+\;2f(x)\;+\;2f(y)\;+\;2f(z)\;+\;2f(w)\;-\;f(x+y)\;-\;f(x+z)\;-\;f(x+w)\;-\;f(y+z)\;-\;f(y+w)\;-\;f(z+w)=0$.

THE LACUNARY STRONG ZWEIER CONVERGENT SEQUENCE SPACES

  • Sengonul, Mehmet
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • In this paper we introduce and study the lacunary strong Zweier sequence spaces $N_{\theta}^O[Z]$, $N_{\theta}[Z]$ consisting of all sequences x = $(x_k)$ such that (Zx) in the space $N_{\theta}$ and $N_{\theta}^O$ respectively, which is normed. Also, prove that $N_{\theta}^O[Z}$, $N_{\theta}[Z}$, are linearly isomorphic to the space $N_{\theta}^O$ and $N_{\theta}$, respectively. And we study some connections between lacunary strong Zweier sequence and lacunary statistical Zweier convergence sequence.

A FIXED POINT APPROACH TO STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

  • Kim, Chang Il;Park, Se Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.453-464
    • /
    • 2016
  • In this paper, we investigate the solution of the following functional inequality $$N(f(x)+f(y)+f(z),t){\geq}N(f(x+y+z),mt)$$ for some fixed real number m with $\frac{1}{3}$ < m ${\leq}$ 1 and using the fixed point method, we prove the generalized Hyers-Ulam stability for it in fuzzy Banach spaces.