• Title/Summary/Keyword: n-i-p-i-n

Search Result 3,964, Processing Time 0.038 seconds

Complete Convergence in a Banach Space (바나하 공간에서의 완전 수렴성)

  • Sung, Soo-Hak
    • The Journal of Natural Sciences
    • /
    • v.9 no.1
    • /
    • pp.57-60
    • /
    • 1997
  • Let {$X_{ni}$,1$\leq$i$\leq$,n$\geq$1} be an array of rowwise independent B-valued random variables which is uniformly bounded by a random various X satisfying $E|X|^{2p}<\infty$ for some p$\geq$1. Let {$a_{ni}$,1$\leq$i$\leq$,n$\geq$1} be an array of constants. Under some auxiliary conditions on {$a_{ni}$}, it is shown that $sum_{i=1}^n a_{ni}X_{ni}\rightarrow0$ in probability if and only if $sum_{i=1}^n a_{ni}X_{ni}$ converges completely ot 0.

  • PDF

HE NONCOMMUTATIVE ℓ1 - ℓ2 INEQUALITY FOR HILBERT C*-MODULES AND THE EXACT CONSTANT

  • Krishna, K. Mahesh;Johnson, P. Sam
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.249-259
    • /
    • 2022
  • Let 𝓐 be a unital C*-algebra. Then it follows that $\sum\limits_{i=1}^{n}(a_ia^*_i)^{\frac{1}{2}}{\leq}\sqrt{n}\(\sum\limits_{i=1}^{n}a_ia^*_i\)^{\frac{1}{2}}$, ∀n ∈ ℕ, ∀a1, …, an ∈ 𝓐. By modifications of arguments of Botelho-Andrade, Casazza, Cheng, and Tran given in 2019, for certain n-tuple x = (a1, …, an) ∈ 𝓐n, we give a method to compute a positive element cx in the C*-algebra 𝓐 such that the equality $$\sum\limits_{i=1}^{n}(a_ia^*_i)^{\frac{1}{2}}=c_x\sqrt{n}\(\sum\limits_{i=1}^{n}a_ia^*_i\)^{\frac{1}{2}}$$ holds. We give an application for the integral of Kasparov. We also derive a formula for the exact constant for the continuous ℓ1 - ℓ2 inequality.

HYPERSTABILITY OF A SUM FORM FUNCTIONAL EQUATION RELATED DISTANCE MEASURES

  • Lee, Young Whan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.147-156
    • /
    • 2020
  • The functional equation related to a distance measure f(pr, qs) + f(ps, qr) = M(r, s)f(p, q) + M(p, q)f(r, s) can be generalized a sum form functional equation as follows $${\frac{1}{n}}{\sum\limits_{i=0}^{n-1}}f(P{\cdot}{\sigma}_i(Q))=M(Q)f(P)+M(P)f(Q)$$ where f, g is information measures, P and Q are the set of n-array discrete measure, and σi is a permutation for each i = 0, 1, ⋯, n-1. In this paper, we obtain the hyperstability of the above type functional equation.

The SSN and crosstalk noise reduction I/O interface scheme using the P/N-CTR code (P/N-CTR 코드를 사용한 SSN과 누화 잡음 감소 I/O 인터페이스 방식)

  • Kim, Jun Bae;Gwon, O Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.4
    • /
    • pp.60-60
    • /
    • 2001
  • 칩과 칩 사이의 전송 속도가 증가함에 따라, 누화 및 스위칭 잡음에 의한 시스템의 성능 저하가 심각해지고 있다. 본 논문에서 제안하는 인터페이스는 한 심벌 펄스의 상승/하강 에지 위치에 데이터를 엔코딩하고, 천이 방향이 반대인 P-CTR과 N-CTR (positive/Negative Constant Transition Rate)을 사용하며, P-CTR 드라이버 2개 묶음과 N-CTR 드라이버 2개 묶음을 교대로 배치하여 버스를 구성한다. 제안하는 P/N-CTR 코드 인터페이스에서는 임의의 한 배선에 대해서 양옆의 이웃한 배선 신호가 동시에 같은 방향으로 스위칭하는 경우가 발생하지 않기 때문에 최대 누화 잡음과 최대 스위칭 잡음을 기존의 I/O 인테페이스 보다 감소시킬 수 있다. 제안하는 인터페이스 방식의 잡음 감소 특성을 검증하기 위하여 다양한 배선 구조와 여러 비트 폭의 버스 구조에 적용하고, 0.35㎛ SPICE 파라미터를 이용한 HSPICE 시뮬레이션을 수행하였다. 제안한 인터페이스는 기존의 인터페이스와 비교하여 32 비트 미만의 버스에서는 최대 누화 잡음이 최소26.78 % 감소하고, 누화는 50 % 감소한다.

SOME APPLICATIONS OF THE UNION OF STAR-CONFIGURATIONS IN ℙn

  • Shin, Yong Su
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.807-824
    • /
    • 2011
  • It has been proved that if $\mathbb{X}^{(s,s)}$ is the union of two linear star-configurations in $\mathbb{P}^2$ of type $s{\times}s$, then $(I_{\mathbb{X}^{(s,s)}})_s{\neq}\{0\}$ for s = 3, 4, 5, and $(I_{\mathbb{X}^{(s,s)}})_s=\{0\}$ for $s{\geq}6$. We extend $\mathbb{P}^2$ to $\mathbb{P}^n$ and show that if $\mathbb{X}^{(s,s)}$ is the union of two linear star-configurations in $\mathbb{P}^n$, then $(I_{\mathbb{X}^{(s,s)}})_s=\{0\}$ for $n{\geq}3$ and $s{\geq}3$. Using this generalization, we also prove that the secant variety $Sec_1(Split_s(\mathbb{P}^n))$ has the expected dimension 2ns + 1 for $n{\geq}3$ and $s{\geq}3$.

A Study on Nuclear Information Management System Utilizing Microcomputer (마이크로 컴퓨터를 이용한 원자력 분야 정보 관리 시스템 개발)

  • 김규선;김태승
    • Journal of the Korean Society for information Management
    • /
    • v.6 no.1
    • /
    • pp.15-36
    • /
    • 1989
  • The r a p i d i n c r e a s e o f microcomputer technology has r e s u l t e d i n t h e broad a p p l i c a t i o n t o various f i e l d s . The purpose of t h l s paper 1s to design a computerized r e t r i e v a l system f o r nuclear information m a t e r i a l s using a microcomputer.

  • PDF

ON THE STRONG LAWS OF LARGE NUMBERS OF NEGATIVELY ASSOCIATED RANDOM VARIABLES

  • Baek, J.I.;Choi, J.Y.;Ryu, D.H.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.457-466
    • /
    • 2004
  • Let{$X_{ni}$\mid$\;1\;{\leq}\;i\;{\leq}\;k_n,\;n\;{\geq}\;1$} be an array of rowwise negatively associated random variables such that $P$\mid$X_{ni}$\mid$\;>\;x)\;=\;O(1)P($\mid$X$\mid$\;>\;x)$ for all $x\;{\geq}\;0,\;and\; \{k_n\}\;and\;\{r_n\}$ be two sequences such that $r_n\;{\geq}\;b_1n^r,\;k_n\;{\leq}\;b_2n^k$ for some $b_1,\;b_2,\;r,\;k\;>\;0$. Then it is shown that $\frac{1}{r_n}\;max_1$\mid${\Sigma_{i=1}}^j\;X_{ni}$\mid$\;{\rightarrow}\;0$ completely convergence and the strong convergence for weighted sums of N A arrays is also considered.

Chow groups on complete regular local rings II

  • Si Chang Lee;Kyu Bum Hwang
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.569-573
    • /
    • 1996
  • We study some special cases of Chow groups of a ramified complete regular local ring R of dimension n. We prove that (a) for codimension 3 Gorenstein ideal I, [I] = 0 in $A_{n-3}(R)$ and (b) for a particular class of almost complete intersection prime ideals P of height i, [P] = 0 in $A_{n-i}(R)$.

  • PDF

IDEMPOTENCE PRESERVING MAPS ON SPACES OF TRIANGULAR MATRICES

  • Sheng, Yu-Qiu;Zheng, Bao-Dong;Zhang, Xian
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.17-33
    • /
    • 2007
  • Suppose F is an arbitrary field. Let ${\mid}F{\mid}$ be the number of the elements of F. Let $T_{n}(F)$ be the space of all $n{\times}n$ upper-triangular matrices over F. A map ${\Psi}\;:\;T_{n}(F)\;{\rightarrow}\;T_{n}(F)$ is said to preserve idempotence if $A-{\lambda}B$ is idempotent if and only if ${\Psi}(A)-{\lambda}{\Psi}(B)$ is idempotent for any $A,\;B\;{\in}\;T_{n}(F)$ and ${\lambda}\;{\in}\;F$. It is shown that: when the characteristic of F is not 2, ${\mid}F{\mid}\;>\;3$ and $n\;{\geq}\;3,\;{\Psi}\;:\;T_{n}(F)\;{\rightarrow}\;T_{n}(F)$ is a map preserving idempotence if and only if there exists an invertible matrix $P\;{\in}\;T_{n}(F)$ such that either ${\Phi}(A)\;=\;PAP^{-1}$ for every $A\;{\in}\;T_{n}(F)\;or\;{\Psi}(A)=PJA^{t}JP^{-1}$ for every $P\;{\in}\;T_{n}(F)$, where $J\;=\;{\sum}^{n}_{i-1}\;E_{i,n+1-i}\;and\;E_{ij}$ is the matrix with 1 in the (i,j)th entry and 0 elsewhere.