HYPERSTABILITY OF A SUM FORM FUNCTIONAL EQUATION RELATED DISTANCE MEASURES

Young Whan Lee

Abstract. The functional equation related to a distance measure

$$
f(p r, q s)+f(p s, q r)=M(r, s) f(p, q)+M(p, q) f(r, s)
$$

can be generalized a sum form functional equation as follows

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)=M(Q) f(P)+M(P) f(Q)
$$

where f, g is information measures, P and Q are the set of n-array discrete measure, and σ_{i} is a permutation for each $i=0,1, \cdots, n-1$. In this paper, we obtain the hyperstability of the above type functional equation.

1. Introduction

Throughout this paper, let (G, \cdot) denote a group and X a real normed algebra. Also let \mathbb{R} and \mathbb{C} denote the set of real and complex numbers, respectively. Let $\mathbb{R}_{+}=\{x \in \mathbb{R} \mid x>0\}$ be a set of positive real numbers.

Chung et al. [2] solved the following functional equation related to distance measures

$$
\begin{equation*}
f(p r, q s)+f(p s, q r)=(r+s) f(p, q)+(p+q) f(r, s) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(p r, q s)+f(p s, q r)=f(p, q) f(r, s) \tag{1.2}
\end{equation*}
$$

for all p, q, r, s in the open interval $(0,1)$ and Elfen et al. [1] solved the general solution $f: G \times G \longrightarrow \mathbb{C}$ of the following functional equation

$$
f(p r, q s)+f(s p, r q)=2 f(p, q)+2 f(r, s)
$$

[^0]for all $p, q, r, s \in G$.
Y. W Lee and G. H. Kim [3] investigate the superstability for a generalized form of the equation (1.2)
$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)=f(P) f(Q)
$$
for all $P, Q \in G^{n}$, where $f: G^{n} \rightarrow G$ is a function and σ_{i} is a permutation on G.

In 2001, G. Maksa and Z. Páles [4] proved a new type of stability of a class of linear functional equation

$$
\begin{equation*}
f(s)+f(t)=\frac{1}{n} \sum_{i=1}^{n} f\left(s \varphi_{i}(t)\right), \quad s, t \in S \tag{1.3}
\end{equation*}
$$

where f is a functional on a semigroup $S:=(S, \cdot)$ and where $\varphi_{1}, \cdots, \varphi_{n}$: $S \rightarrow S$ pairwise distinct automorphisms of S such that the set $\left\{\varphi_{1}, \cdots, \varphi_{n}\right\}$ is a group with the operation of composition of mappings. More precisely, they proved that if the error bound for the difference of two sides of (1.3) satisfies a certain asymptotic property, then in fact, the two sides have to be equal. Such a phenomenon is called the hyperstability of the functional equation on S.

In 2015, M. Sirouni and S. Kabbaj [6] investigated of the hyperstability of an Euler-Lagrange type quadratic functional equation

$$
f(x+y)+\frac{f(x-y)+f(y-x)}{2}=2 f(x)+2 f(y)
$$

in class of functions from an abelian group into Banach space. This equation is established the general solution and stability by M. J. Rassias [5].

In this paper, we obtain a generalized form of the equation (1.1) related to distance measures and prove the hyperstability of following functional equations

$$
\begin{align*}
\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)= & M(Q) f(P)+M(P) f(Q) \tag{1.4}\\
\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)= & M(Q) f(P)+M(P) f(Q) \\
& +M(P \cdot Q) \theta(M(P), M(Q)) \tag{1.5}
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)=f(P)+f(Q) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)=f(P)+f(Q)+\theta(M(P), M(Q)) \tag{1.7}
\end{equation*}
$$

2. Hyperstability of equations

For all $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right), Q=\left(q_{1}, q_{2}, \ldots, q_{n}\right) \in G^{n}$, let $\sigma_{i}: G^{n} \rightarrow$ G^{n} be a permutation given by

$$
\begin{aligned}
\sigma_{0}\left(p_{1}, p_{2}, \ldots, p_{n}\right) & =\left(p_{1}, p_{2}, \ldots, p_{n}\right) \\
\sigma_{i}\left(p_{1}, p_{2}, \ldots, p_{n}\right) & =\left(p_{i+1}, \ldots p_{n}, p_{1}, p_{2}, \ldots, p_{i}\right)
\end{aligned}
$$

for each $i=1, \ldots, n-1$ and $P \cdot Q=\left(p_{1} q_{1}, p_{2} q_{2}, \ldots, p_{n} q_{n}\right)$.
It can be easily checked that for all $P, Q, W \in G$ and $i, j=0,1, \cdots, n-1$
(a) $\sigma_{n}(P)=\sigma_{0} P$,
(b) $\sigma_{n+j}(P)=\sigma_{j} P$,
(c) $\left(P \cdot \sigma_{i}(Q)\right) \cdot \sigma_{j}(W)=P \cdot\left(\sigma_{i}(Q) \cdot \sigma_{j}(W)\right)$,
(d) $P \cdot \sigma_{i}\left(Q \cdot \sigma_{j}(W)\right)=P \cdot \sigma_{i}(Q) \cdot\left(\sigma_{i} \sigma_{j}(W)\right)$,
(e) $\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sigma_{i}(Q) \cdot \sigma_{j}(W)=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sigma_{i}(Q) \cdot \sigma_{i+j}(W)$.

For convenience, any solution $M: G^{n} \rightarrow X$ of the functional equation

$$
\begin{aligned}
& M(P \cdot Q)=M(P) M(Q) \\
& M\left(\sigma_{i}(P)\right)=M(P), \quad\left(P, Q \in G^{n}, i=0,1, \cdots, n-1\right)
\end{aligned}
$$

is called a strong multiplicative function. For example, consider a function $M: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $M(P)=p_{1} p_{2} \cdots p_{n}=\prod_{i=1}^{n} p_{i}$ for any $P=\left(p_{1}, p_{2}, \cdots, p_{n}\right) \in \mathbb{R}^{n}$. Then M is strong multiplicative.

Note that any solution $F: G \times G \rightarrow X$ of the functional equation

$$
F(x, y)+F(x y, z)=F(x, y z)+F(y, z), \quad(x, y, z \in G)
$$

is called a cocycle on $G \times G$ into X and the equation is called the cocycle equation. It is well known that the cocycle equation play an important role in the hyperstability.

Lemma 2.1. Let $f: G^{n} \rightarrow X$ be an arbitrary function, $\theta: X \times X \rightarrow X$ a cocycle and $M: G^{n} \rightarrow X$ a strong multiplicative function. Then the function $F: G^{n} \rightarrow S$ defined by
$F(P, Q)=f(P)+f(Q)-\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)+\theta(M(P), M(Q)), \quad\left(P, Q \in G^{n}\right)$
satisfies the following functional equation

$$
\begin{equation*}
F(P, Q)+\frac{1}{n} \sum_{i=0}^{n-1} F\left(P \cdot \sigma_{i}(Q), W\right)=F(Q, W)+\frac{1}{n} \sum_{i=0}^{n-1} F\left(P, Q \cdot \sigma_{i}(W)\right) \tag{2.1}
\end{equation*}
$$

for all $P, Q, W \in G^{n}$.

Proof. (1) For all $P, Q, W \in G^{n}$, we have

$$
\begin{aligned}
& F(P, Q)+\frac{1}{n} \sum_{i=0}^{n-1} F\left(P \cdot \sigma_{i}(Q), W\right) \\
& =f(P)+f(Q)-\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)+\theta(M(P), M(Q)) \\
& \quad+\frac{1}{n} \sum_{i=0}^{n-1}\left\{f\left(P \cdot \sigma_{i}(Q)\right)+f(W)-\frac{1}{n} \sum_{j=0}^{n-1} f\left(P \cdot \sigma_{i}(Q) \cdot \sigma_{j}(W)\right)\right\} . \\
& \quad+\frac{1}{n} \sum_{i=0}^{n-1} \theta\left(M\left(P \cdot \sigma_{i}(Q)\right), M(W)\right) \\
& =f(P)+f(Q)+f(W)-\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} f\left(P \cdot \sigma_{i}(Q) \cdot \sigma_{j}(W)\right) \\
& \quad+\theta(M(P), M(Q))+\theta(M(P) M(Q), M(W)) .
\end{aligned}
$$

(2) Similarly, for all $P, Q, W \in G^{n}$, we deduce

$$
\begin{aligned}
F & (Q, W)+\frac{1}{n} \sum_{i=0}^{n-1} F\left(P, Q \cdot \sigma_{i}(W)\right) \\
= & f(Q)+f(W)-\frac{1}{n} \sum_{i=0}^{n-1} f\left(Q \cdot \sigma_{i}(W)\right)+\theta(M(Q), M(W)) \\
& +\frac{1}{n} \sum_{i=0}^{n-1}\left\{f(P)+f\left(Q \cdot \sigma_{i}(W)\right)-\frac{1}{n} \sum_{j=0}^{n-1} f\left(P \cdot \sigma_{j}\left(Q \cdot \sigma_{i}(W)\right)\right)\right\} \\
& +\frac{1}{n} \sum_{i=0}^{n-1} \theta\left(M(P), M\left(Q \cdot \sigma_{i}(W)\right)\right. \\
= & f(Q)+f(W)+f(P)-\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} f\left(P \cdot \sigma_{i}\left(\left(Q \cdot \sigma_{i}(W)\right)\right)\right. \\
& +\theta(M(Q), M(W))+\theta(M(P), M(Q)(W)) .
\end{aligned}
$$

Since, for any $P, Q, W \in G^{n}$,

$$
\begin{aligned}
& \theta(M(P), M(Q))+\theta(M(P) M(Q), M(W)) \\
& \quad=\theta(M(Q), M(W))+\theta(M(P), M(Q) M(W))
\end{aligned}
$$

The functional equation (2.1) turn out to be valid.
THEOREM 2.2. Let $\varepsilon>0$ and $M: G^{n} \rightarrow \mathbb{R}_{+}$be a strong multiplicative function with $M\left(P_{0}\right)>1$ for some $P_{0} \in G^{n}$. Assume also that a function $\theta: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a cocycle and a function $f: G^{n} \rightarrow \mathbb{R}$ satisfy the inequality

$$
\begin{gather*}
\left\lvert\, \frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)-M(Q) f(P)-M(P) f(Q)\right. \\
-M(P \cdot Q) \theta(M(p), M(Q)) \mid \leq \varepsilon \tag{2.2}
\end{gather*}
$$

for all $P, Q \in G^{n}$. Then f is a solution of the functional equation (1.5). That is, for all $P, Q \in G^{n}$
$\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)=M(Q) f(P)+M(P) f(Q)+M(P \cdot Q) \theta(M(p), M(Q))$.
Proof. For any $P, Q \in G^{n}$, we define

$$
L(P):=\frac{f(P)}{M(P)}
$$

and
$F(P, Q):=L(P)+L(Q)-\frac{1}{n} \sum_{i=0}^{n-1} L\left(P \cdot \sigma_{i}(Q)\right)+M(P \cdot Q) \theta(M(p), M(Q))$.
With these notations, the stability inequality (2.2) reduces to

$$
\begin{aligned}
& |F(P, Q)|=\left|\frac{1}{n} \sum_{i=0}^{n-1} L\left(P \cdot \sigma_{i}(Q)\right)-L(P)-L(Q)+\theta(M(p), M(Q))\right| \\
& \quad \leq \frac{\varepsilon}{M(P) M(Q)}
\end{aligned}
$$

for all $P, Q \in G^{n}$. By Lemma 2.1, we have

$$
F(P, Q)+\frac{1}{n} \sum_{i=0}^{n-1} F\left(P \cdot \sigma_{i}(Q), W\right)=F(Q, W)+\frac{1}{n} \sum_{i=0}^{n-1} F\left(P, Q \cdot \sigma_{i}(W)\right)
$$

for all $P, Q, W \in G^{n}$. Letting $P=P_{0}^{k}$, we have, for any $Q, W \in G^{n}$

$$
\begin{aligned}
& |F(Q, W)| \leq\left|\frac{1}{n} \sum_{i=0}^{n-1} F\left(P_{0}^{k}, Q \cdot \sigma_{i}(W)\right)\right| \\
& \quad+\left|F\left(P_{0}^{k}, Q\right)\right|+\left|\frac{1}{n} \sum_{i=0}^{n-1} F\left(P_{0}^{k} \cdot \sigma_{i}(Q), W\right)\right| \\
& \quad \leq \frac{1}{n} \sum_{i=0}^{n-1} \frac{\varepsilon}{M\left(P_{0}\right)^{k} M(Q \cdot W)}+\frac{\varepsilon}{M\left(P_{0}\right)^{k} M(Q)}+\frac{1}{n} \sum_{i=0}^{n-1} \frac{\varepsilon}{M\left(P_{0}\right)^{k} M(Q \cdot W)} \\
& \quad \leq \frac{1}{M\left(P_{0}\right)^{k}}\left(\frac{2 n \varepsilon}{M(Q \cdot W)}+\frac{\varepsilon}{M(Q)}\right)
\end{aligned}
$$

as $k \rightarrow \infty$. And so $F(Q, W)=0$ for all $Q, W \in G^{n}$. Thus f is a solution of (1.5).

By Theorem 2.2 with $\theta=0$, we have the following theorem.
THEOREM 2.3. Let $\varepsilon>0$ and $M: G^{n} \rightarrow \mathbb{R}_{+}$be a strong multiplicative function with $M\left(P_{0}\right)>0$ for some $P_{0} \in G^{n}$ Assume also that a function $f: G^{n} \rightarrow \mathbb{R}$ satisfy the inequality

$$
\left|\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)-M(Q) f(P)-M(P) f(Q)\right| \leq \varepsilon
$$

for all $P, Q \in G^{n}$. Then f is a solution of the functional equation (1.4). That is, for all $P, Q \in G^{n}$

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)=M(Q) f(P)+M(P) f(Q)
$$

Corollary 2.4. Let $\varepsilon>0$ and a function $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ satisfy the inequality

$$
\left|\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)-\left(\prod_{i=1}^{n} q_{i}\right) f(P)-\left(\prod_{i=1}^{n} p_{i}\right) f(Q)\right| \leq \varepsilon
$$

for all $P=\left(p_{1}, \cdots, p_{n}\right), Q=\left(q_{1}, \cdots, q_{n}\right) \in R_{+}^{n}$. Then

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)=\left(\prod_{i=1}^{n} q_{i}\right) f(P)+\left(\prod_{i=1}^{n} p_{i}\right) f(Q)
$$

for all $P=\left(p_{1}, \cdots, p_{n}\right), Q=\left(q_{1}, \cdots, q_{n}\right) \in R_{+}^{n}$.
Proof. Let $M(P)=\prod_{i=1}^{n} p_{i}=p_{1} p_{2} \cdots p_{n}$ for any $P=\left(p_{1}, p_{2} \cdots p_{n}\right) \in$ R_{+}^{n}. Then M is a strong multiplicative function and $M\left(P_{0}\right)=2$ for $P_{0}=(2,1, \cdots, 1)$. By Theorem 2.3, we complete the proof.

Theorem 2.5. Let $\varepsilon: G^{n} \times G^{n} \rightarrow \mathbb{R}$ be function for which there exists a sequence $\left(W_{k}\right)_{k \in \mathbb{N}}$ of elements of G^{n} satisfying the following condition:

$$
\lim _{k \rightarrow \infty} \varepsilon\left(W_{k} \cdot P, Q\right)=0, \quad P, Q \in G^{n} .
$$

Also let $M: G^{n} \rightarrow X$ be a strong multiplicative function, a function $\theta: S \times S \rightarrow X$ be a cocycle, and a function $f: G^{n} \rightarrow X$ satisfy the inequality

$$
\left\|\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)-f(P)-f(Q)+\theta(M(P), M(Q))\right\| \leq \varepsilon(P, Q)
$$

for all $P, Q \in G^{n}$. Then f is a solution of the functional equation (1.7). That is, for all $P, Q \in G^{n}$

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)-f(P)-f(Q)+\theta(M(P), M(Q))
$$

Proof. For any $P, Q \in G^{n}$, we define
$F(P, Q):=L(P)+L(Q)-\frac{1}{n} \sum_{i=0}^{n-1} L\left(P \cdot \sigma_{i}(Q)\right)+M(P \cdot Q) \theta(M(p), M(Q))$.

By Lemma 2.1, we have

$$
F(P, Q)+\frac{1}{n} \sum_{i=0}^{n-1} F\left(P \cdot \sigma_{i}(Q), W\right)=F(Q, W)+\frac{1}{n} \sum_{i=0}^{n-1} F\left(P, Q \cdot \sigma_{i}(W)\right)
$$

for all $P, Q, W \in G^{n}$. Letting $P=W_{k} \cdot P$, we have, for any $Q, W \in G^{n}$

$$
\begin{aligned}
& |F(Q, W)| \leq\left|\frac{1}{n} \sum_{i=0}^{n-1} F\left(W_{k} \cdot P, Q \cdot \sigma_{i}(W)\right)\right| \\
& \quad+\left|F\left(W_{k} \cdot P, Q\right)\right|+\left|\frac{1}{n} \sum_{i=0}^{n-1} F\left(W_{k} \cdot P \cdot \sigma_{i}(Q), W\right)\right| \\
& \quad \leq \frac{1}{n} \sum_{i=0}^{n-1} \varepsilon\left(W_{k} \cdot P, Q \cdot \sigma_{i}(W)\right)+\varepsilon\left(W_{k} \cdot P, Q\right)+\frac{1}{n} \sum_{i=0}^{n-1} \varepsilon\left(W_{k} \cdot P \cdot \sigma_{i}(Q), W\right) \\
& \quad \longrightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$. And so $F(Q, W)=0$ for all $Q, W \in G^{n}$. Thus f is a solution of (1.7).

By Theorem 2.5 with $\theta=0$, we have the following theorem.
ThEOREM 2.6. Let $\varepsilon: G^{n} \times G^{n} \rightarrow \mathbb{R}$ be function for which there exists a sequence $\left(W_{k}\right)_{k \in \mathbb{N}}$ of elements of G^{n} satisfying the following condition:

$$
\lim _{k \rightarrow \infty} \varepsilon\left(W_{k} \cdot P, Q\right)=0, \quad P, Q \in G^{n}
$$

Assume also that a function $f: G^{n} \rightarrow X$ satisfy the inequality

$$
\left\|\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)-f(P)-f(Q)\right\| \leq \varepsilon(P, Q)
$$

for all $P, Q \in G^{n}$. Then f is a solution of the functional equation (1.6). That is, for all $P, Q \in G^{n}$

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)=f(P)+f(Q)
$$

Corollary 2.7. Let $\varepsilon: G^{n} \times G^{n} \rightarrow \mathbb{R}_{+}$be function for which there exists a sequence $\left(W_{k}\right)_{k \in \mathbb{N}}$ of elements of G^{n} satisfying the following condition:

$$
\lim _{k \rightarrow \infty} \varepsilon\left(W_{k} \cdot P, Q\right)=0, \quad P, Q \in G^{n}
$$

and let a function $\theta: S \times S \rightarrow X$ be a cocycle. Assume also that a function $f: G^{n} \rightarrow X$ satisfy the inequality

$$
\left\|\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)-f(P)-f(Q)+\theta\left(\prod_{i=1}^{n} p_{i}, \prod_{i=1}^{n} q_{i}\right)\right\| \leq \varepsilon(P, Q)
$$

for all $P=\left(p_{1}, \cdots, p_{n}\right), Q=\left(q_{1}, \cdots, q_{n}\right) \in G^{n}$. Then, for all $P=$ $\left(p_{1}, \cdots, p_{n}\right), Q=\left(q_{1}, \cdots, q_{n}\right) \in G^{n}$

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)=f(P)+f(Q)+\theta\left(\prod_{i=1}^{n} p_{i}, \prod_{i=1}^{n} q_{i}\right)
$$

Corollary 2.8. Assume that a function $f: \mathbb{R}_{+}^{n} \rightarrow X$ satisfy the inequality

$$
\left\|\frac{1}{n} \sum_{i=0}^{n-1} f\left(P \cdot \sigma_{i}(Q)\right)-f(P)-f(Q)\right\| \leq \prod_{i=1}^{n} p_{i} \prod_{i=1}^{n} q_{i}
$$

for all $P=\left(p_{1}, \cdots, p_{n}\right), Q=\left(q_{1}, \cdots, q_{n}\right) \mathbb{R}_{+}^{n}$. Then f is a solution of the functional equation (1.6).

Proof. Define a function $\varepsilon: \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$by $\varepsilon(P, Q):=\prod_{i=1}^{n} p_{i} \prod_{i=1}^{n} q_{i}$ for any $P=\left(p_{1}, \cdots, p_{n}\right), Q=\left(q_{1}, \cdots, q_{n}\right) \in \mathbb{R}_{+}^{n}$. Choose a sequence $W_{k}=\left(\frac{1}{k}, \cdots, \frac{1}{k}\right)$ in \mathbb{R}_{+}^{n}. Then

$$
\varepsilon\left(W_{k} \cdot P, Q\right)=\frac{1}{k^{n}} \prod_{i=1}^{n} p_{i} \prod_{i=1}^{n} q_{i} \rightarrow 0
$$

as $k \rightarrow \infty$ for any $P=\left(p_{1}, \cdots, p_{n}\right), Q=\left(q_{1}, \cdots, q_{n}\right) \in \mathbb{R}_{+}^{n}$. By Theorem $4, f$ is a solution of the functional equation (1.6).

Example 2.9. Assume that a function $f: \mathbb{R}_{+}^{3} \rightarrow X$ satisfy the inequality

$$
\begin{aligned}
& \| f\left(p_{1} q_{1}, p_{2} q_{2}, p_{3} q_{3}\right)+f\left(p_{1} q_{2}, p_{2} q_{3}, p_{3} q_{1}\right)+f\left(p_{1} q_{3}, p_{2} q_{1}, p_{3} q_{2}\right) \\
& \quad-3 f\left(p_{1}, p_{2}, p_{3}\right)-3 f\left(q_{1}, q_{2}, q_{3}\right) \| \\
& \quad \leq p_{1} p_{2} p_{3} g_{1} q_{2} q_{3}
\end{aligned}
$$

for all $P=\left(p_{1}, p_{2}, p_{3}\right), Q=\left(q_{1}, q_{2}, q_{3}\right) \in \mathbb{R}_{+}^{3}$. Then we have

$$
\begin{aligned}
& f\left(p_{1} q_{1}, p_{2} q_{2}, p_{3} q_{3}\right)+f\left(p_{1} q_{2}, p_{2} q_{3}, p_{3} q_{1}\right)+f\left(p_{1} q_{3}, p_{2} q_{1}, p_{3} q_{2}\right) \\
& =3 f\left(p_{1}, p_{2}, p_{3}\right)+3 f\left(q_{1}, q_{2}, q_{3}\right)
\end{aligned}
$$

for all $P=\left(p_{1}, p_{2}, p_{3}\right), Q=\left(q_{1}, q_{2}, q_{3}\right) \in \mathbb{R}_{+}^{3}$.

References

[1] H. H. Elfen, T. Riedel, and P. K. Sahoo, A variant of the quadratic functional equation on groups an an application, Bull. Korean Math. Soc., 54 (2017), no. 6, 2165-3016.
[2] J. K. Chung, Pl. Kannappan, C. T. Ng, and P. K. Sahoo, Measures of distance between probability distributions, J. Math. Anal. Appl., 138 (1989), 280-292.
[3] Y. W. Lee and G. H. Kim, Superstability of the functional equation related to distance measures, J. Inequality and Application, DOI: 10.1186/s13660-015-08804 (2015)
[4] G. Maksa and Z Páles, Hyperstability of a class of linear functional equations, Acta Mathematica Academiae Paedagogicae Nyiregyháziensis, 17 (2001), no. 2, 107-112.
[5] M. J. Rassias, J. M. Rassias product-sum stability of an Euler-Lagrange functional equation, J. Nonlinear Science and its App., 3 (2010), no. 4, 265-271.
[6] M. Sirouni and S. Kabbaj, The ε-hyperstability of an Euler-lagrange type quadratic functional equations in Banach spaces, British J. of Math. \& Computer Science, 6 (2015), no. 6, 481-493.

Department of Information Security, Daejeon University,
Daejeon 300-716, Korea
E-mail: ywlee@dju.kr

[^0]: Received November 18, 2019; Accepted January 31, 2020.
 2010 Mathematics Subject Classification: 39B82, 39B52.
 Key words and phrases: superstability, hyperstability, stability of functional equation.

 This research was supported by the Daejeon University Research Grants (2019).

