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SOME APPLICATIONS OF THE UNION OF
STAR-CONFIGURATIONS IN Pn

Yong Su Shin*

Abstract. It has been proved that if X(s,s) is the union of two
linear star-configurations in P2 of type s × s, then (IX(s,s))s 6= {0}
for s = 3, 4, 5, and (IX(s,s))s = {0} for s ≥ 6. We extend P2 to Pn

and show that if X(s,s) is the union of two linear star-configurations
in Pn, then (IX(s,s))s = {0} for n ≥ 3 and s ≥ 3. Using this gen-
eralization, we also prove that the secant variety Sec1(Splits(P

n))
has the expected dimension 2ns + 1 for n ≥ 3 and s ≥ 3.

1. Introduction

We are interested in the secant variety to the variety X ⊂ Pn and the
tangent space ideal at a point in X ⊂ Pn, where X is a non-degenerate,
reduced, and irreducible variety of dimension d. We are also interested
in the dimension of the secant variety to determine if the secant variety
is not defective. Recent papers studied the secant varieties ([1, 3, 4, 5,
7, 8, 9, 10, 12, 13]).

In [13], the author showed that if X(t,s) is the union of two linear star-
configurations in P2 of type t×s with 3 ≤ t ≤ 9 and s ≥ t, then R/IX(t,s)

has generic Hilbert function, and (IX(s,s))s = {0} for s ≥ 6. With these
two results, the author also showed that when n = 2, the secant variety
Sec1(Splits(P2)) has the expected dimension 4s + 1 for s ≥ 6 and that
the ideal IX(s,s) has the following property:

dimk(IX(s,s))s =

{
3, 3, 1 for s = 3, 4, 5, respectively,
0, for s ≥ 6.
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In this paper we attempt to generalize this result and find an answer to
the following question.

Question 1.1. What is dimk(IX)s when X := X(s,s) is the union of
two linear star-configurations in Pn of type s× s, n ≥ 3 and s ≥ 3?

In [3] the author showed that when 3(s−1) ≤ n and s > 2, the secant
variety Secr−1(Splits(Pn)) has the expected dimension using Terracini’s
Lemma, which will be introduced in the next section. We will however
use the ideal of the union of two linear star-configurations X in Pn instead
of Terracini’s Lemma to find first the dimension, dimk(IX)s, and then
the secant variety Secr−1(Splits(Pn)).

Our goal is to find an answer to Question 1.1 and its applications. In
Section 2, we briefly review some definitions, notations, and preliminary
results of the secant varieties Secr−1(Splits(Pn)). In Section 3, we show
that if X := X(s,s) is the union of two linear star-configurations in Pn

with n ≥ 3 and s ≥ 3, then

(IX)s = {0},
which is the key element to the complete answer to Question 1.1. With
this result, we introduce another method to prove that the secant variety

Sec1(Splits(Pn))

has the expected dimension 2ns + 1 for n ≥ 3 and s ≥ 3.

2. Preliminary results and definitions

First, we recall definitions of Hilbert function, the secant varieties
Secr−1(Splits(Pn)), and irreducible varieties respectively. Let R = k[x0,
x1, . . . , xn] be an (n + 1)-variable polynomial ring over a field k of char-
acteristic 0, Rd its homogeneous part of degree d, and Pn the projective
n-space over a field k. With these notations, P(Rd) := P(n+d

d )−1 is nat-
urally identified with the set of hypersurfaces of degree d in Pn. Recall
that if I is a homogeneous ideal in R or the ideal of a subscheme X in Pn,
then R/I =

⊕
t≥0 Rt/It is a graded ring. In this situation the Hilbert

function of X (or R/I) is the function of the subscheme X (or of the ring
R/I) as follows:

HX(t) = H(R/I, t) := dimk Rt − dimk It.

The first difference of the Hilbert function H is defined by

∆H(0) = 1 and ∆H(t) = H(t)−H(t− 1) for t > 0.
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Let λ ` d denote a partition of the integer d, i.e.

λ = (λ1, . . . , λr) where λ1 ≥ · · · ≥ λr ≥ 1 and
r∑

i=1

λi = d.

We associate a variety, denoted by Xλ,n, to R = k[x0, x1, . . . , xn] and λ,
which is defined by

Xλ,n := {[F ] ∈ P(Rd) | F = F1 · · ·Fr, deg Fi = λi},
and we omit the n if it is clear from the context. Such varieties are
called varieties of reducible forms. If λ is the d-tuple (1, . . . , 1), then
the variety is often referred to as the variety of completely decomposable
forms or split forms. In this case, Xλ,n is denoted by Splitd(Pn).

Let X1, . . . ,Xr all be non-degenerate, reduced and irreducible vari-
eties in Pn with dimXi = di.

Definition 2.1 (Definition 2.1, [1]). (a) Choose points Pi ∈ Xi such
that {P1, . . . , Pr} are linearly independent (and so r ≤ n). The
join of {P1, . . . , Pr} is the linear space spanned by the points, i.e.,

Λ(P1, . . . , Pr) := 〈P1, . . . , Pr〉 ' Pr−1.

(b) The join of X1, . . . ,Xr is

Λ(X1, . . . ,Xr) =
⋃

Λ(P1, . . . , Pr)

for all P1, . . . , Pr linearly independent with Pi ∈ Xi.
(c) If X1 = · · · = Xr = X with dimX = d, then we write

Λ(X1, . . . ,Xr) = Secr−1(X)

and call it the (r − 1)-st secant variety to X.

The number of parameters shows that the upper bound of the dimension
of the join is

dimΛ(X1, . . . ,Xr) ≤ min
{

n,
∑r

i=1
di + (r − 1)

}
,

and thus
dimSecr−1(X) ≤ min{n, dr + (r − 1)}.

We now introduce Terracini’s Lemma, which is useful to find the
dimensions of both joins and secant varieties.

Lemma 2.2 (Terracini’s Lemma, [14]). Let X1, . . . ,Xr be as above and
let Pi be a generic point on Xi. Let P be generic points in Λ(P1, . . . , Pr).
Then the projective tangent space to Λ = Λ(X1, . . . ,Xr) at P is

TP,Λ = 〈TP1,X1 , . . . , TPr,Xr〉
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i.e., the linear space of the tangent spaces at the given points.

Definition 2.3. Let X ⊂ Pn be a projective variety of dimension
d. Then the expected dimension of the secant variety Secr−1(X) to X is
defined by

expdim(Secr−1(X)) = min{n, dr + (r − 1)}.
However, the expected dimension of Secr−1(X) is not always the same as
dimSecr−1(X). When δr−1 = expdim(Secr−1(X)) − dimSecr−1(X) > 0,
we say that the secant variety Secr−1(X) to X is defective and δr−1 is
called defect.

Since we are interested in secants to the varieties of reducible forms,
we introduce another important result (in view of Terracini’s Lemma) in
[7] to find a description of the tangent space at a generic point of those
varieties.

Proposition 2.4 ([7]). Let λ ` d, λ = (λ1, . . . , λr) and let Xλ,n ⊂
P(d+n

n )−1. Let P = [F1 · · ·Fr] be a generic point of Xλ,n where deg Fi =
λi, i = 1, . . . , r. Then

TP,Xλ,n
= P(VP )

where VP is the subspace of Rd = k[x0, . . . , xn]d defined by

VP :=
r∑

i=1

(F1 . . . F̂i . . . Fr)Rλi ,

where ∗̂ means that we omit ∗.
When we wish to find the dimension of the secant variety Secr−1(Xλ,n)

to Xλ,n, Terracini’s Lemma clearly suggests that we choose first generic
points, P1, . . . , Pr on Xλ,n, and then find the dimension of the subspace

VP1 + · · ·+ VPr ⊂ k[x0, . . . , xn]d.

We try to place this problem in a more general context.

Definition 2.5. The tangent space ideal of Xλ,n at the point P is the
unique saturated ideal, TP , in R = k[x0, . . . , xn], with the property that

(TP )d = VP .

The following corollary shows the dimension of the secant variety, by
which we can decide whether or not the dimension and the expected
dimension of the secant variety are the same. In other words, we can
determine if the given secant variety is not defective.
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Corollary 2.6 ([7]). Let λ ` d, λ = (λ1, . . . , λr) and let Xλ,n ⊂
P(d+n

n )−1. Let P1, . . . , Pr be r generic points on Xλ,n. Then

dimSecr−1(Xλ,n) =
[(

d + n

n

)
−H(A, d)

]
− 1 = dimk Id − 1

where A = R/I and I = TP1 + · · ·+ TPr .

Finally we introduce a star-configuration and a linear star-configuration
in Pn.

Proposition 2.7 ([1]). Let F1, F2, . . . , Fr be general forms in R =
k[x0, x1, . . . , xn] with r ≥ 3. Then

⋂

1≤i<j≤r

(Fi, Fj) =
r∑

i=1

(F1 · · · F̂i · · ·Fr).

Definition 2.8. With notations in Proposition 2.7, the variety X
in Pn of the ideal

⋂
1≤i<j≤r(Fi, Fj) =

∑r
i=1(F1 · · · F̂i · · ·Fr) is called

a star-configuration in Pn of type r. In particular, if deg Fi = 1 for
every i = 1, . . . , r, we call X a linear star-configuration in Pn of type r.
Furthermore, if X is the union of two star-configurations in Pn defined
by s general linear forms and t general linear forms, respectively, then
we call X the union of two linear star-configurations Pn of type s × t,
denoted by X := X(s,t).

Remark 2.9. (a) If X is a star-configuration in Pn, then X is an
arithmetically Cohen-Macaulay subscheme in Pn of codimension 2
(see Remark 2.2, [2]).

(b) Let R = k[x0, . . . , xn], X be a star-configuration in Pn with n ≥ 3,
and L be a general linear form in R/IX. Since X is an arith-
metically Cohen-Macaulay subscheme in Pn of codimension 2, L
is a non-zero divisor of R/IX. Thus R/(IX, L) is also a Cohen-
Macaulay ring of codimension 2. In other words, (IX, L)/(L) is
also the ideal of a star-configuration in Pn−1.

3. Secant varieties Sec1(Splits(Pn))

As mentioned in the introduction, in [3] they proved that the secant
variety Secr−1(Splits(Pn)) has the expected dimension for 3(s − 1) ≤ n
and s > 2 using Terracini’s Lemma. As these two conditions indicate, it
has been unknown for n = 2. In [13], the author showed that the secant
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variety Sec1(Splits(P2)), where n = 2, has the expected dimension for
s > 2.

In this section, we shall find the dimension of the ideal of the union
of two linear star-configurations in Pn of type s × s in degree s. With
this result, we shall give another method to prove that Sec1(Splits(Pn))
has the expected dimension for n ≥ 3 and s > 2.

The following lemma is immediately from Proposition 2.7 and Re-
mark 2.9 (a), (see also Corollary 2.5 in [2]).

Lemma 3.1. Let Li be general linear forms in k[x0, x1, x2, x3] for
i = 1, . . . , s with s ≥ 3 and let

I [s] :=
s∑

i=1

(L1 · · · L̂i · · ·Ls)

be the ideal of a linear star-configuration in P3. Then the Hilbert func-
tion of R/I [s] is

H(R/I [s], t) =

{(
3+t
3

)
, 0 ≤ t ≤ s− 2,(

3+(s−2)
3

)
+ (t− (s− 2))

(
2+(s−2)

2

)
, t ≥ s− 1.

Proof. Let L be a general linear form in R. By Remark 2.9 (b), the
Hilbert function of R/(I [s], L) is the same as the Hilbert function of the
linear star-configuration in P2 of type s. Thus the first difference of the
Hilbert function of R/I [s] is

∆H(R/I [s], t) =

{(
2+t
2

)
, 0 ≤ t ≤ s− 2,(

2+(s−2)
2

)
, t ≥ s− 1.

This implies that

H(R/I [s], t) =

{(
3+t
3

)
, 0 ≤ t ≤ s− 2,(

3+(s−2)
3

)
+ (t− (s− 2))

(
2+(s−2)

2

)
, t ≥ s− 1,

as we wished.

Remark 3.2. Let n and s be positive integers. By induction on n,
we can easily obtain the following equation, and so we omit the proof.

(
s+n
n

)
=

((s−1)+n
(s−1)

)
+

((s−1)+(n−1)
(s−1)

)
+ · · ·+ ((s−1)+1

(s−1)

)
+

((s−1)+0
(s−1)

)
.

The following proposition shows the dimension of the ideal of the
linear star-configurations in Pn. Using Corollary 2.5 in [2], one can obtain
the following proposition. However, an elementary proof (which we now
give) is also possible.
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Proposition 3.3. Let R = k[x0, x1, . . . , xn] and Li be general linear
forms in R for i = 1, . . . , s with s ≥ 3 and n ≥ 3. Let

I [s] :=
∑s

i=1
(L1 · · · L̂i · · ·Ls)

be the ideal of a linear star-configuration in Pn. Then

dimk I [s]
s = ns + 1.

Proof. We shall prove this by induction on n with n ≥ 3.
First, let n = 3. Then, by Lemma 3.1, the statement holds for this case.
Now assume n > 3. By Remark 2.9 (b), the first difference of the Hilbert
function of R/I [s] is the Hilbert function of a linear star-configuration
in Pn−1 of type s. Hence, by induction on n, we have

H(R/I [s], s)−H(R/I [s], s− 1)
= ∆H(R/I [s], s)
=

((s−2)+(n−1)
(n−1)

)
+ 2 · ((s−2)+(n−2)

(n−2)

)
+ · · ·+

((n− 1)− 2) · ((s−2)+3
3

)
+ ((n− 1)− 1) · ((s−2)+2

2

)
.

This implies that
(3.1)

H(R/I [s], s)
= ∆H(R/I [s], s) + H(R/I [s], s− 1)
=

[((s−2)+(n−1)
(n−1)

)
+ 2 · ((s−2)+(n−2)

(n−2)

)
+ · · ·+ ((n− 1)− 2) · ((s−2)+3

3

)
+

((n− 1)− 1) · ((s−2)+2
2

)]
+

[
dimk Rs−1 − dimk I

[s]
s−1

]

=
[((s−2)+(n−1)

(n−1)

)
+ 2 · ((s−2)+(n−2)

(n−2)

)
+ · · ·+ ((n− 1)− 2) · ((s−2)+3

3

)
+

((n− 1)− 1) · ((s−2)+2
2

)]
+

[(
(s−1)+n

n

)− s
]

=
[((s−2)+(n−1)

(n−1)

)
+ 2 · ((s−2)+(n−2)

(n−2)

)
+ · · ·+

((n− 1)− 2) · ((s−2)+3
3

)
+ ((n− 1)− 1) · ((s−2)+2

2

)]

+
[(

(s−2)+n)
n

)
+

((s−2)+(n−1)
(n−1)

)
+ · · ·+ (

(s−2)+2
2

)
+

(
(s−2)+1

1

)
+

(
(s−2)+0

0

)− s
]

(by Remark 3.2)

=
[((s−2)+(n−1)

(n−1)

)
+ 2 · ((s−2)+(n−2)

(n−2)

)
+ · · ·+

((n− 1)− 2) · ((s−2)+3
3

)
+ ((n− 1)− 1) · ((s−2)+2

2

)]
+[(

(s−2)+n)
n

)
+

((s−2)+(n−1)
(n−1)

)
+ · · ·+ (

(s−2)+2
2

)
+

(
(s−2)+1

1

)]
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=
[((s−2)+(n−1)

(n−1)

)
+ 2 · ((s−2)+(n−2)

(n−2)

)
+ · · ·+

((n− 1)− 2) · ((s−2)+3
3

)
+ ((n− 1)− 1) · ((s−2)+2

2

)]
+[(

(s−2)+n)
n

)
+

((s−2)+(n−1)
(n−1)

)
+ · · ·+ (

(s−2)+2
2

)
+

(
(s−2)+1

1

)]

=
((s−2)+n

(s−2)

)
+ 2 · ((s−2)+(n−1)

(s−2)

)
+ · · ·+

(n− 2) · ((s−2)+3
(s−2)

)
+ (n− 1) · ((s−2)+2

(s−2)

)
,

as we wanted. Furthermore, it is from Remark 3.2 that
(
s+n
n

)
=

(
(s−1)+n

n

)
+

((s−1)+(n−1)
(n−1)

)
+ · · ·+ (

(s−1)+1
1

)
+

(
(s−1)+0

0

)
,

(
(s−1)+n

n

)
=

(
(s−2)+n

n

)
+

((s−2)+(n−1)
(n−1)

)
+ · · ·+

(
(s−2)+2

2

)
+

(
(s−2)+1

1

)
+

(
(s−2)+0

0

)
,

((s−1)+(n−1)
(n−1)

)
=

((s−2)+(n−1)
(n−1)

)
+

((s−2)+(n−2)
(n−2)

)
+ · · ·+

(
(s−2)+2

2

)
+

(
(s−2)+1

1

)
+

(
(s−2)+0

0

)
,

...
...((s−1)+3

3)

)
=

(
(s−2)+3

3

)
+

(
(s−2)+2

2

)
+

(
(s−2)+1

1

)
+

(
(s−2)+0

0

)
,

(
(s−1)+2

2

)
=

(
(s−2)+2

2

)
+

(
(s−2)+1

1

)
+

(
(s−2)+0

0

)
.

This indicates that

(3.2)

dimk Rs

=
(
s+n
n

)

=
(
(s−2)+n

n

)
+ 2 · ((s−2)+(n−1)

(n−1)

)
+ · · ·+ (n− 2) · ((s−2)+3

3

)
+

(n− 1) · ((s−2)+2
2

)
+

[(
(s−1)+1

1

)
+

(
(s−1)+0

0

)]
+

(n− 1)
[(

(s−2)+1
1

)
+

(
(s−2)+0

0

)]

=
(
(s−2)+n

n

)
+ 2 · ((s−2)+(n−1)

(n−1)

)
+ · · ·+ (n− 2) · ((s−2)+3

3

)
+

(n− 1) · ((s−2)+2
2

)
+ ns + 1

= H(R/I [s], s) + ns + 1.

From equation (3.2), we have

dimk I
[s]
s = dimk Rs −H(R/I [s], s) = ns + 1,

which completes the proof.



Some applications of the union of star-configurations in Pn 815

We now find the dimension of the ideal of the union of two linear
star-configurations in P3 of type s × s in degree s. This lemma is a
bridge to the main theorem (see Theorem 3.7).

Lemma 3.4. Let R = k[x0, x1, x2, x3] and Li,Mi be general linear
forms in R for i = 1, 2, . . . , s with s ≥ 3 and let

I [s] :=
∑s

i=1
(L1 · · · L̂i · · ·Ls),

J [s] :=
∑s

i=1
(M1 · · · M̂i · · ·Ms),

i.e., the ideals of linear star-configurations in P3 of type s defined by
linear forms L1, . . . , Ls and M1, . . . , Ms, respectively. Then, for 3 ≤ s ≤
5,

dimk(I [s] ∩ J [s])s = 0.

Proof. We shall prove this lemma with 3 cases for s = 3, 4, and 5,
respectively.
Case 1. Let s = 3.
Define the ideal I [2] = (x0, x1). Without loss of generality, we may
assume that

M1 = x2,M2 = x3,M3 = ax0 + bx1 + cx2 + dx3,

where a, b, c, d ∈ k − {0}. Consider the following exact seqeuence.

(3.3) 0 → J [3] ∩ I [2] → J [3] → J [3]/(J [3] ∩ I [2]) → 0.

Since J [3]/(J [3] ∩ I [2]) ' (J [3] + I [2])/I [2], we can rewrite equation (3.3)
as

(3.4) 0 → J [3] ∩ I [2] → J [3] → (J [3] + I [2])/I [2] → 0.

Since the dimesnion of (J [3] + I [2])/I [2] in degree 2 is represented by
dimk(R/(x0, x1))2:

dimk((J [3] + I [2])/I [2])2
= dimk

(
((M1M2,M1M3,M2M3) + (x0, x1))/(x0, x1)

)
2

= dimk

(
((x2x3, x2(ax0 + bx1 + cx2 + dx3),

x3(ax0 + bx1 + cx2 + dx3)) + (x0, x1))/(x0, x1)
)
2

= dimk

(
((x2x3, cx

2
2, dx2

3) + (x0, x1))/(x0, x1)
)
2

= dimk〈x̄2
2, x̄2x̄3, x̄

2
3〉2

= dimk(R/(x0, x1))2,

we get that

dimk((J [3] + I [2])/I [2])3 = dimk(R/(x0, x1))3 = 4.
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Note that the Hilbert function of R/J [3] is 3t + 1 for t ≥ 0. It is from
equation (3.4) that

dimk(J [3] ∩ I [2])3 = dimk J
[3]
3 − dimk(J [3] + I [2])/I [2])3

= 10− 4 = 6.
(3.5)

Now consider two ideals I [3] and J [3] and we assume

L1 = x0, L2 = x1, L3 = x2.

Define
J [3,1] = (M1,M2) ∩ (M1,M3) ∩ (M2,M3) ∩ (x1, x2), and
J [3,2] = J [3,1] ∩ (x0, x2)

= J [3] ∩ (x0, x2) ∩ (x1, x2).

Since M1,M2, and M3 are general linear forms,

(3.6)

dimk((J [3,1] + I [2])/I [2])3
= dimk((M1M2, M1M3, M2M3) ∩ (x2))3
= dimk((x2M1M2, x2M1M3, x2M2M3))3
= 3.

Moreover, it is from equation (3.5) that

dimk J
[3,1]
3 = dimk((M1,M2) ∩ (M1,M3) ∩ (M2,M3) ∩ (x1, x2))3

= dimk((M1,M2) ∩ (M1,M3) ∩ (M2,M3) ∩ (x0, x1))3
= dimk(J [3] ∩ I [2])3 = 6.

So, for every t ≥ 0,

(3.7)
dimk J

[3,2]
t = dimk(J [3] ∩ (x1, x2) ∩ (x0, x2))t

= dimk(J [3] ∩ (x1, x2) ∩ (x0, x1))t

= dimk(J [3,1] ∩ I [2])t.

Using equation (3.7) and the following exact sequence

0 → J [3,1] ∩ I [2] → J [3,1] → (J [3,1] + I [2])/I [2] → 0,

we obtain

(3.8)
dimk J

[3,2]
3 = dimk(J [3,1] ∩ I [2])3

= dimk J
[3,1]
3 − dimk((J [3,1] + I [2])/I [2])3

= 3.

Furthermore,

J [3,2] = J [3,1] ∩ (x0, x2)
= J [3] ∩ (x1, x2) ∩ (x0, x2)
= J [3] ∩ (x0x1, x2),
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and so
dimk((J [3,2] + I [2])/I [2])3

= dimk((J [3,2] + (x0, x1))/(x0, x1))3
= dimk((J [3] ∩ (x0x1, x2) + (x0, x1))/(x0, x1))3
= dimk(x2M1M2, x2M1M3, x2M2M3)3
= 3.

Note that

(3.9)
J [3] ∩ I [3] = J [3] ∩ (x0, x1) ∩ (x1, x2) ∩ (x0, x2)

=
(
J [3] ∩ (x1, x2) ∩ (x0, x2)

) ∩ (x0, x1)
= J [3,2] ∩ I [2].

Using equation (3.9) and the following exact sequence

0 → J [3,2] ∩ I [2] → J [3,2] → (J [3,2] + I [2])/I [2] → 0,

we have that

dimk(J [3] ∩ I [3])3 = dimk J
[3,2]
3 − dimk

(
(I [3,2] + I [2])/I [2]

)
3

= 3− 3 = 0.
(3.10)

Case 2. Let s = 4.
Without loss of generality, assume that

L1 = x0, L2 = x1, L3 = x2, L4 = x3.

Since all the Mi are general linear forms, we have that

(3.11)
dimk((J [4] + I [2]]/I [2])3 = dimk

( 4∑

i=1

(M1 · · · M̂i · · ·M4)
)

3

= 4
= dimk(R/(x0, x1))3.

Thus
dimk((J [4] + I [2])/I [2])4 = 5.

Using Proposition 3.3 and the following exact sequence

0 → J [4] ∩ I [2] → J [4] → (J [4] + I [2])/I [2] → 0,

we obtain that

dimk(J [4] ∩ I [2])4 = dimk J
[4]
4 − dimk((J [4] + I [2])/I [2])4

= 13− 5 = 8.
(3.12)

Define
J [4,1] := J [4] ∩ (x1, x2), and
J [4,2] := J [4] ∩ (x1, x2) ∩ (x2, x3).
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By equation (3.12),

(3.13)

dimk J
[4,1]
4 = dimk[J [4] ∩ (x1, x2)]4

= dimk[J [4] ∩ (x0, x1)]4 (since Mi are general)
= dimk(J [4] ∩ I [2])4
= 8.

Note that

(3.14)

dimk((J [4,1] + I [2])/I [2])4
= dimk(J [4] ∩ (x1, x2) + (x0, x1))/(x0, x1))4
= dimk(J [4] ∩ (x̄2))4
= dimk(J [4])3
= dimk J

[4]
3

= 4, (by equation (3.11)), and
dimk J

[4,2]
t = dimk(J [4] ∩ (x1, x2) ∩ (x2, x3))t

= dimk(J [4] ∩ (x1, x2) ∩ (x0, x1))t

(since Mi are general linear forms)
= dimk(J [4,1] ∩ I [2])t for every t ≥ 0.

Using equation (3.14) and the following exact sequence

0 → J [4,1] ∩ I [2] → J [4,1] → (J [4,1] + I [2])/I [2] → 0,

we get that

dimk J
[4,2]
4 = dimk(J [4,1] ∩ I [2])4

= dimk(J [4,1])4 − dimk((J [4,1] + I [2])/I [2])4
= 8− 4
= 4.

Using the same method as in equation (3.14), we obtain that

(3.15)

dimk((J [4,2] + I [2])/I [2])4
= dimk((J [4,2] + (x0, x1))/(x0, x1))4
= dimk(J [4] ∩ (x1, x2) ∩ (x2, x3) + (x0, x1))/(x0, x1))4
= dimk(J [4] ∩ (x2) ∩ (x2, x3) + (x0, x1))/(x0, x1))4
= dimk(J [4] ∩ (x2) + (x0, x1))/(x0, x1))4
= dimk(J̄ [4] ∩ (x̄2))4
= dimk J̄

[4]
3

= 4.

Note that

(3.16) J [4] ∩ I [4] ⊆ (J [4] ∩ (x1, x2) ∩ (x2, x3)) ∩ (x0, x1)
= J [4,2] ∩ I [2].
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Using equations (3.15) and (3.16), and the following exact sequence

0 → J [4,2] ∩ I [2] → J [4,2] → ((J [4,2] + I [2])/I [2] → 0,

we have

dimk(J [4] ∩ I [4])4 ≤ dimk J [4,2] ∩ I [2]

= dimk(J [4,2])4 − dimk(((J [4,2] + I [2])/I [2])4 = 0.

Case 3. Let s = 5.

Define
L1 = x0, L2 = x1, L3 = x2, L4 = x3.

Since the Mi are general linear forms, we have that

dimk((J [5] + I [2]]/I [2])4 =
( 5∑

i=1

(M1 · · · M̂i · · ·M5)
)

4

= 5
= dimk(R/(x0, x1))4.

Thus we know
dimk((J [5] + I [2])/I [2])5 = 6,

and by Proposition 3.3,

dimk J
[5]
5 = 16.

Using the following exact sequence

0 → J [5] ∩ I [2] → J [5] → (J [5] + I [2])/I [2] → 0,

we obtain that

dimk(J [5] ∩ I [2])5 = dimk J
[5]
5 − dimk((J [5] + I [2])/I [2])5

= 16− 6 = 10.
(3.17)

Define
J [5,1] := J [5] ∩ (x1, x2), and
J [5,2] := J [5] ∩ (x1, x2) ∩ (x2, x3).

By equation (3.17),

(3.18)

dimk J
[5,1]
5 = dimk(J [5] ∩ (x1, x2))5

= dimk(J [5] ∩ (x0, x1))5
= dimk(J [5] ∩ I [2])5
= 10.
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Moreover, note that

(3.19)

dimk((J [5,1] + I [2])/I [2])5
= dimk((J [5,1] + (x0, x1))/(x0, x1))5
= dimk(J [5] ∩ (x1, x2) + (x0, x1))/(x0, x1))5
= dimk(J [5] ∩ (x̄2))5
= dimk(J [5])4
= dimk J

[5]
4

= 5, and
dimk J

[5,2]
5 = dimk(J [5] ∩ (x1, x2) ∩ (x2, x3))5

= dimk(J [5] ∩ (x1, x2) ∩ (x0, x1))5
(since Mi are general linear forms)

= dimk(J [5,1] ∩ I [2])5.

Using equations (3.18), (3.19) and the following exact sequence

0 → J [5,1] ∩ I [2] → J [5,1] → (J [5,1] + I [2])/I [2] → 0,

we obtain that

dimk J
[5,2]
5 = dimk(J [5,1])5 − dimk((J [5,1] + I [2])/I [2])5

= 10− 5 = 5.
(3.20)

Note that

(3.21)

dimk((J [5,2] + I [2])/I [2])5
= dimk(J [5] ∩ (x1, x2) ∩ (x2, x3) + (x0, x1))/(x0, x1))5
= dimk(J [5] ∩ (x2) ∩ (x2, x3) + (x0, x1))/(x0, x1))5
= dimk(J [5] ∩ (x2) + (x0, x1))/(x0, x1))5
= dimk(J [5] ∩ (x2))5

(since Mi are general linear forms)
= dimk(J [5])4
= dimk(J [5])4
= 5, and

dimk(J [5] ∩ I [5])5
≤ dimk(J [5] ∩ I [4])5
≤ dimk(J [5] ∩ (x1, x2) ∩ (x2, x3) ∩ (x0, x1))5
= dimk(J [5,2] ∩ I [2])5.

Using equations (3.20) and (3.21), and the following exact sequence

0 → J [5,2] ∩ I [2] → J [5,2] → (J [5,2] + I [2])/I [2] → 0,
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we have
dimk(J [5] ∩ I [5])5 ≤ dimk(J [5,2] ∩ I [2])5

= dimk(J [5,2])5 − dimk((J [5,2] + (x0, x1))/(x0, x1))5
= 0,

which completes the proof.

Now we are ready to prove the main theorem. We first introduce the
following theorem and proposition in [13].

Theorem 3.5 ([13]). Let R = k[x0, x1, x2] =
⊕n

i=0 Ri Let X := X(t,s)

be the union of two linear star-configurations in P2 of type t × s with
3 ≤ t ≤ 9 and s ≥ t. Then R/IX has generic Hilbert function.

Proposition 3.6 (Proposition 4.1, [13]). Let X := X(s,s) be the union
of two linear star-configurations in P2 of type s× s with s ≥ 6. Then

(IX)s = {0}.
Theorem 3.7. Let R = k[x0, x1, . . . , xn] with n ≥ 3 and Li,Mi be

general linear forms in R for i = 1, 2, . . . , s with s ≥ 3. Let

I [s] :=
s∑

i=1

(L1 · · · L̂i · · ·Ls),

J [s] :=
s∑

i=1

(M1 · · · M̂i · · ·Ms).

Then
dimk(I [s] ∩ J [s])s = 0.

Proof. We shall prove this theorem by induction on n ≥ 3. First, by
Lemma 3.4, the statement holds for n = 3 and 3 ≤ s ≤ 5.

Now assume n > 3 and 3 ≤ s ≤ 5. By Remark (b), the union of
two star-configurations in Pn is also a subscheme in Pn of codimension
2, and so we may assume L = x0 is a nonzero divisor of R/I [s] ∩ J [s].
Define

(I [s] ∩ J [s], L)/(L) := I [s] ∩ J [s]

⊆ R/(x0) ' S = k[x1, . . . , xn],
L̄i := (Li + (x0))/(x0),
M̄i := (Mi + (x0))/(x0),

Ī [s] :=
s∑

i=1

(L̄1 · · · ˆ̄Li · · · L̄s), and

J̄ [s] :=
s∑

i=1

(M̄1 · · · ˆ̄Mi · · · M̄s).
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Since I [s] ∩ J [s] is not saturated in general, for 3 ≤ s ≤ 5

(3.22)
dimk(I [s] ∩ J [s])s ≤ dimk(Ī [s] ∩ J̄ [s])s = 0
(by Lemma 3.4 and induction on n)

⇒ dimk(I [s] ∩ J [s])s = 0.

Furthermore, since L is not a zero divisor of I [s] ∩ J [s], we get that

(I [s] ∩ J [s])s = {0}
for such s.

Now consider the case for n ≥ 3 and s ≥ 6. With the same notations
as above, by Proposition 3.6,

(Ī [s] ∩ J̄ [s])s = {0} for n = 3 and s ≥ 6.

By the same arguments as in equation (3.22),

(I [s] ∩ J [s])s = {0} for n = 3 and s ≥ 6.

Therefore, by induction on n, we show that

(I [s] ∩ J [s])s = {0} for n ≥ 3 and s ≥ 6,

which completes the proof.

As an immediate consequence of Proposition 3.3, Lemma 3.4, and
Theorem 3.5 with Corollary 4.3 in [13], we obtain the following corollary.

Corollary 3.8.
Sec1(Splits(Pn))

has the expected dimension for n ≥ 2 and s ≥ 3. In particular,

dim Sec1(Splits(Pn)) = expdim Sec1(Splits(Pn)) = 2ns + 1,

for n ≥ 3 and s ≥ 3.

Proof. First, by Corollary 4.3 in [13], the statement holds for n = 2
and s ≥ 3.
Now suppose n ≥ 3 and s ≥ 3. Let X := X(s,s) be the union of two linear
star-configurations X1 and X2 in Pn of type s, and let I := IX1 + IX2 .
By Theorem 3.7 and the following exact sequence

0 → IX → IX1 ⊕ IX2 → I → 0,

we have that

dimk Is = dimk(IX1)s + dimk(IX2)s = 2dimk(IX1)s = 2ns + 2,
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and hence
expdim Sec1(Splits(Pn))

= min{2× dim(P(R1)× · · · × P(R1)︸ ︷︷ ︸
s-times

) + 1,dimP(Rs)}

= min
{

2ns + 1,

(
s + n

n

)
− 1

}

= 2ns + 1 (since n ≥ 3 and s ≥ 3)
= dimk Is − 1
= dimSec1(Splits(Pn)) (by Corollary 2.6),

as we wished.

Remark 3.9. In [3], they showed that the secant variety

Secr−1(Splits(Pn))

has the expected dimension for 3(s− 1) ≤ n and s > 2 using Terracini’s
Lemma (see [3] and [14]). Their results however do not cover the case of
reducible plane curves. For this case, the author in [13] showed that the
secant line varieties Sec1(Splits(P2)) still have the expected dimension.
In Corollary 3.8 of this paper, we introduced another way (algebraic
method) to prove that the secant line varieties Sec1(Splits(Pn)) have the
expected dimension for n ≥ 3.
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1998.

[12] J. M. Landsberg and L. Manivel. On the ideals of secant varieties of Segre
varieties, Found. Comput. Math. 4 (2004), no. 4, 397–422.

[13] Y. S. Shin, Secants to The Variety of Completely Reducible Forms and The
Union of Linear Star-Configurations in P2, Submitted.

[14] A. Terracini. Sulle Vk per cui la varietà degli Sh (h + 1)-seganti ha dimensione
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