• Title/Summary/Keyword: n-butyric acid

Search Result 194, Processing Time 0.024 seconds

Novel Electroluminescent Polymer Derived from Pyrene-Functionalized Polyaniline

  • Amarnath, Chellachamy Anbalagan;Kim, Hyoung-Kun;Yi, Dong-Kee;Lee, Sang-Hyup;Do, Young-Rag;Paik, Un-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1495-1499
    • /
    • 2011
  • A solution processable polymer was synthesized, by incorporating pyrene groups into the backbone of the polyaniline chain, and used as an emissive layer in an organic light emitting diode. The polyaniline base was reacted with acid chloride of pyrene butyric acid to form pyrene-functionalized polyaniline chains. The source of pyrene moiety was acid chloride of pyrene butyric acid. The formation of polymer from acid chloride of pyrene butyric acid and polyaniline was confirmed by the FTIR and $^1H$-NMR spectroscopy. Differential scanning calorimetry revealed high glass transition temperature of 210 $^{\circ}C$. Due to the presence of pyrene moieties in the backbone, the polyaniline synthesized in the present study is solution processable with light emitting property. The photoluminescence spectrum of the polymer revealed that emission lies in the blue region, with a peak at 475 nm. The light emitting device of this polymer exhibits the turn-on voltage of 15 V.

Effect of Butyric Acid on Performance, Gastrointestinal Tract Health and Carcass Characteristics in Broiler Chickens

  • Panda, A.K.;Rama Rao, S.V.;Raju, M.V.L.N.;Shyam Sunder, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.1026-1031
    • /
    • 2009
  • An experiment was conducted to study the effect of graded levels of butyric acid (butyrate) on performance, gastrointestinal tract health and carcass characteristics in young broiler chickens. Control starter (0-3 wk) and finisher (4-5 wk) diets were formulated to contain 2,900 kcal ME/kg and 22% CP, and 3,000 kcal ME/kg and 20% CP, respectively. Subsequently, four other experimental diets were formulated to contain 0.05% antibiotic (furazolidone) or 0.2, 0.4 and 0.6% butyric acid. Each diet was fed at random to 8 replicates of 6 chicks each throughout the experimental period (0-5 wk). The results showed that 0.4% butyrate in the diet was similar to antibiotic in maintaining body weight gain and reducing E. coli numbers but superior for feed conversion ratio. No added advantage on these parameters was obtained by enhancing the concentration of butyrate from 0.4 to 0.6% in the diet. Feed intake and mortality were not influenced by the dietary treatments. A reduction in pH of the upper GI tract (crop, proventiculus and gizzard) was observed by inclusion of butyrate in the diets of broilers compared to either control or antibiotic-fed group. Butyrate at 0.4% was more effective in reducing the pH than 0.2% butyrate. Within the lower GI tract, 0.4 and 0.6% butyrate was effective in lowering pH in the duodenum, but no effect was found in either the jejunum or ileum. The villus length and crypt depth in the duodenum increased significantly in all the butyrate treated diets irrespective of the level tested. Carcass yield was higher and abdominal fat content was lower significantly in all the butyrate treatment groups compared to the control or antibiotic group. From these findings, it is concluded that 0.4% butyric acid supplementation maintained performance, intestinal tract health, and villi development and carcass quality in broiler chickens.

Isolation and characteristics of hyper-butanol producing OBT7 mutant of Clostridium saccharoperbutylacetonicum N1-4 (클로스트리디움 싸카로퍼부틸아세토니컴 N1-4주(株)로부터 부타놀 다량생산주(株) OBT 돌연변이의 분리와 특성)

  • Ahn, Byoung-Kwon
    • Applied Biological Chemistry
    • /
    • v.36 no.1
    • /
    • pp.38-44
    • /
    • 1993
  • 1) OBT7 mutant was isolated by W light-butanol tolerance from Clostridium saccharoperbutylacetonicm ATCC 13564 (N1-4 strain). The mutant produced 16.5 g/l (1.4-fold increase) of n-butanol, 4.65 g/l (1.5-fold increase) of acetone, and 21.5 g/l of total solvent. It was suggested that clostridial bacteria producing n-butanol does not have a poor effect on misrepair via an error-prone pathway by UV light-butanol tolerance. 2) Compared to glucose fermentation, in mannitol fermentation, OBT7 mutant did not produce acetone and acetic acid. And the ratios of n-butanol and ethanol to total solvents increased by 10.3% and 10.5%, respectively, totalling 20.8%, while the ratio of acetone was decreased by 21.2%. Also the maximum ratio of n-butanol to total solvents reached 94.8%. These results indicated that oxidized compound (acetone, acetic acid, and butyric acid) was converted to the reduced compounds (n-butanol, and ethanol). Therefore, mannitol can be used to eliminate by-products of oxidized compound.

  • PDF

β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

  • Kim, Yeong Chae;Kim, Yeon Hwa;Lee, Young Hee;Lee, Sang Woo;Chae, Yun-Soek;Kang, Hyun-Kyung;Yun, Byung-Wook;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.305-316
    • /
    • 2013
  • Non-protein amino acid, ${\beta}$-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.

Identification of ${\omega}$-Aminotransferase from Caulobacter crescentus and Sitedirected Mutagenesis to Broaden Substrate Specificity

  • Hwang, Bum-Yeol;Ko, Seung-Hyun;Park, Hyung-Yeon;Seo, Joo-Hyun;Lee, Bon-Su;Kim, Byung-Gee
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.48-54
    • /
    • 2008
  • A putative ${\omega}$-aminotransferase gene, cc3143 (aptA), from Caulobacter crescentus was screened by bioinformatical tools and overexpressed in E. coli, and the substrate specificity of the ${\omega}$-aminotransferase was investigated. AptA showed high activity for short-chain ${\beta}$-amino acids. It showed the highest activity for 3-amino-n-butyric acid. It showed higher activity toward aromatic amines than aliphatic amines. The 3D model of the ${\omega}$-aminotransferase was constructed by homology modeling using a dialkylglycine decarboxylase (PDB ID: 1DGE) as a template. Then, the ${\omega}$-aminotransferase was rationally redesigned to increase the activity for 3-amino-3-phenylpropionic acid. The mutants N285A and V227G increased the relative activity for 3-amino-3-phenylpropionic acid to 3-amino-n-butyric acid by 11-fold and 3-fold, respectively, over that of wild type.

Field Control of Phytophthora Blight of Pepper Plants with Antagonistic Rhizobacteria and DL-$\beta$-Amino-n-Butyric Acid

  • Lee, Jung-Yeop;Kim, Beom-Seok;Lim, Song-Won;Lee, Byung-Kook;Kim, Choong-Hoe;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.217-222
    • /
    • 1999
  • Treatment with antagonistic rhizobactera Burkholderia cepacia strain N9523 or an inducer of resistance DL-$\beta$-amino-n-butyric acid (BABA) effectively inhibited Phytophthora capsici infection on pepper plants in artificially infested pots. Treatment with BABA alone at $1,000\mu\textrm{g}$/ml or together with B. cepacia in combination induced a strong protection from the Phytophthora disease in the greenhouse. In artificially infested field, protection of pepper plants against the Phytophthora epidemic by BABA treatment was maintained at a considerable level. In contrast, soil drench with the antagonist B. cepacia alone, or in combination with BABA did not suppress the Phytophthora epidemic in the field. Mortality of pepper plants caused by P. capsici infection was significantly reduced by treatment with the antagonist Pseudomonas aeruginosa strain 950923-29 and BABA (12-29% plants diseased) relative to the untreated control (41-91% plants diseased) in the naturally infested field. Treatment with the antagonist Ps. aeruginosa strain 950923-29 and BABA also resulted in high levels of protection against Phytophthora blight in pepper plants. In the plastic filmhouse test, the average percentage of plants diseased was significantly low relative to the naturally infested field. Treatment with the antagonist Ps. aeruginosa strain 950923-29 and BABA in combination was most effective in suppressing the Phytophthora disease in field and plastic filmhouse.

  • PDF

Fermentation Quality of Italian Ryegrass (Lolium multiflorum Lam.) Silages Treated with Encapsulated-glucose, Glucose, Sorbic Acid and Pre-fermented Juices

  • Shao, Tao;Zhanga, L.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1699-1704
    • /
    • 2007
  • This experiment was carried out to evaluate the effects of adding encapsulated-glucose, glucose, sorbic acid or prefermented juice of epiphytic lactic acid bacteria (FJLB) on the fermentation quality and residual mono- and disaccharide composition of Italian ryegrass (Lolium multiflorum Lam) silages. The additive treatments were as follows: (1) control (no addition), (2) encapsulated-glucose addition at 0.5% for glucose, (3) glucose addition at 1%, (4) sorbic acid addition at 0.1%, (5) FJLB addition at a theoretical application rate of $2.67{\times}10^5$ CFU (colony forming unit) $g^{-1}$, on a fresh weight basis of Italian ryegrass. Although control and encapsulated-glucose treatments had higher contents of butyric acid (33.45, 21.50 g $kg^{-1}$ DM) and ammonia-N/Total nitrogen (114.91, 87.01 g $kg^{-1}$) as compared with the other treated silages, the fermentation in all silages was clearly dominated by lactic acid. This was well indicated by the low pH (4.38-3.59), and high lactic acid/acetic acid (4.39-22.97) and lactic acid content (46.85-121.76 g $kg^{-1}$ DM). Encapsulated-0.5% glucose and glucose addition increased lactic acid/acetic acid, and significantly (p<0.05) decreased ammonia-N/total nitrogen, and the contents of butyric acid and total volatile fatty acids (VFAs) as compared with the control. However, there were higher butyric acid and lower residual mono-and di-saccharides on the two treatments as compared with sorbic acid and FJLB addition, and their utilization efficiency of water soluble carbohydrates (WSC) was lower than that of both sorbic acid and FJLB additions. Sorbic acid addition showed the lowest content of ethanol and ammonia-N/total nitrogen, and the highest content of residual fructose and total mono-and disaccharides as well as the higher lactic acid/acetic acid value. Sorbic acid addition decreased the loss of mono-and disaccharides, and inhibited the activity of clostridial and other undesirable bacteria, and greatly increased the utilization efficiency of fermentable substrates by epiphytic LAB. FJLB addition had the lowest pH value and the highest lactic acid content among all additive treatments, with the most intensive lactic acid fermentation occurring in FJLB treated silage. This resulted in the faster accumulation of lactic acid and faster pH reduction. Sorbic acid and FJLB addition depressed clostridia or other undesirable bacterial fermentation which decreased the WSC loss and saved the fermentable substrate for lactic acid fermentation.

Effect of Additives on the Fermentation Quality and Residual Mono- and Disaccharides Compositions of Forage Oats (Avena sativa L.) and Italian Ryegrass (Lolium multiflorum Lam.) Silages

  • Shao, Tao;Shimojo, M.;Wang, T.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1582-1588
    • /
    • 2005
  • This study aimed to evaluate the effects of silage additives on the fermentation qualities and residual mono- and disaccharides composition of silages. Forage Oats (Avena sativa L.) and Italian Ryegrass (Lolium multiflorum Lam.) were ensiled with glucose, sorbic acid and pre-fermented juice of epiphytic lactic acid bacteria (FJLB) treatments for 30 days. In both species grass silages, although the respective controls had higher contents of butyric acid (20.86, 33.45g $kg^{-1}$ DM) and ammonia-N/total nitrogen (100.07, 114.91 g $kg^{-1}$) as compared with other treated silages in forage oats and Italian ryegrass, the fermentation was clearly dominated by lactic acid bacteria. This was well indicated by the low pH value (4.27, 4.38), and high lactic acid/acetic acid (6.53, 5.58) and lactic acid content (61.67, 46.85 g $kg^{-1}$ DM). Glucose addition increased significantly (p<0.05) lactic acid/acetic acid, and significantly (p<0.05) decreased the values of pH and ammonia-N/total nitrogen, and the contents of butyric acid and volatile fatty acids as compared with control, however, there was a slightly but significantly (p<0.05) higher butyric acid and lower residual mono- and di-saccharides as compared with sorbic acid and FJLB additions. Sorbic acid addition showed the lowest ethanol, acetic acid and ammonia-N/total nitrogen, and highest contents of residual fructose, total mono- and di-saccharides and dry matter as well as high lactic acid/acetic acid and lactic acid content. FJLB addition had the lowest pH value and the highest lactic acid content, the most intensive lactic acid fermentation occurring in FJLB treated silages. This resulted in the faster accumulation of lactic acid and faster pH reduction. Sorbic acid and FJLB additions depressed clostridia or other undesirable bacterial fermentation, thus this decreased the water-soluble carbohydrates loss and saved the fermentable substrate for lactic acid fermentation.

Characteristics of Food Components in Granular Ark and Ark Shell (고막 및 새고막의 부위별 식품성분 특성)

  • Kim Kui Shik;Kim Jeung Hoon;Bae Tae Jin;Park Choon-Kyu;Kim Myung-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.5
    • /
    • pp.512-518
    • /
    • 2002
  • In order to effectively utilize of granular ark and ark shell, lipid and fatty acid compositions, free amino acids, nucleotides and their related compounds and minerals in the muscle and viscera of raw and cooked specimens were analyzed. The major constituents of non-polar lipids in the granular ark and ark shell were triglycerides, which showed higher content in viscera than the muscle. The polar lipids in the granular ark and ark shell were mainly consisted of phosphatidylcholine and phosphatidylethanolamine. The major fatty acids of total lipid were 16:0, 20:5n-3, 18:1n-9, 16:1n-7, 18:0 and 22:6n-3 both the granular ark and ark shell. The major nucleotides and the related compounds were adenosine monophosphate and adenosine diphosphate and they had higher content in the muscle than in viscera both samples, free amino acids such as taurine, glycine, alanine, glutamic acid, phenyl alanine and aspartic acid were abundant both the granular ark and ark shell. In the raw muscle of granular ark, glycine, alanine and $\alpha$-amino-iso-butyric acid were high level, but glutamic acid, aspartic acid and phenyl alanine were low level compared with those of cooking muscle. In the raw muscle of ark shell, taurine and $\alpha$-amino-iso-butyric acid were high content, but the glutamic acid and aspartic acid were low level compared with those of cooking muscle. Minerals in the granular ark and ark shell were chiefly consisted of potassium, sodium, magnesium, iron and calcium.

Antifungal Properties of Some Short Chain Fatty Acids against Phytopathogenic Fungi (식물병원균에 대한 몇가지 저급지방산의 항균특성)

  • Park Jong Seong;Kohmoto Keisuke;Nishimura Shoyo
    • Korean Journal Plant Pathology
    • /
    • v.2 no.2
    • /
    • pp.89-95
    • /
    • 1986
  • The five short-chain fatty acids such as isobutyric(C-4), butyric(C-4), isovaleric(C-5), valeric(C-5) and caproic (C-6) acids obtained from the extract of common purslane showed wide antifungal spectra against spore germination and mycelial growth of the twenty five phytopathogenic fungi tested in vitro, although there were differences in antifungal potency among them. The antifungal potency of each fatty acid varied significantly against different fungi in spore germination and mycelial growth. The seventeen fungi used for spore germination test and the sixteen fungi used for mycelial growth test can be divided into three groups depending upon differences in minimal inhibitory concentration of each fatty acid for them, respectively. Caproic acid was significantly more toxic to germination than to mycelial growth of the test fungi, while the other four fatty acids did not show such a significant differences in toxicity with a few of exceptions as shown in valerie acid. The longer the chain-length of fatty acid was, the higher the antifungal potency was shown. The normal fatty acids such as butyric and valerie acid were more toxic than their isomers to spore germination and mycelial growth of the test fungi. Each fatty acid was more toxic to spore germination of obligate parasites and some of facultative parasites, and mycelial growth of facultative parasites than to spore germination and mycelial growth of saprophytes, respectively.

  • PDF