Browse > Article

Identification of ${\omega}$-Aminotransferase from Caulobacter crescentus and Sitedirected Mutagenesis to Broaden Substrate Specificity  

Hwang, Bum-Yeol (School of Chemical Engineering, and Institute for Molecular Biology and Genetics, Seoul National University)
Ko, Seung-Hyun (School of Chemical Engineering, and Institute for Molecular Biology and Genetics, Seoul National University)
Park, Hyung-Yeon (Division of Chemistry, Inha University)
Seo, Joo-Hyun (School of Chemical Engineering, and Institute for Molecular Biology and Genetics, Seoul National University)
Lee, Bon-Su (Division of Chemistry, Inha University)
Kim, Byung-Gee (School of Chemical Engineering, and Institute for Molecular Biology and Genetics, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.1, 2008 , pp. 48-54 More about this Journal
Abstract
A putative ${\omega}$-aminotransferase gene, cc3143 (aptA), from Caulobacter crescentus was screened by bioinformatical tools and overexpressed in E. coli, and the substrate specificity of the ${\omega}$-aminotransferase was investigated. AptA showed high activity for short-chain ${\beta}$-amino acids. It showed the highest activity for 3-amino-n-butyric acid. It showed higher activity toward aromatic amines than aliphatic amines. The 3D model of the ${\omega}$-aminotransferase was constructed by homology modeling using a dialkylglycine decarboxylase (PDB ID: 1DGE) as a template. Then, the ${\omega}$-aminotransferase was rationally redesigned to increase the activity for 3-amino-3-phenylpropionic acid. The mutants N285A and V227G increased the relative activity for 3-amino-3-phenylpropionic acid to 3-amino-n-butyric acid by 11-fold and 3-fold, respectively, over that of wild type.
Keywords
${\omega}$-Aminotransferase; substrate specificity; homology modeling; rational design; Caulobacter crescentus;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Figeys, D. 2002. Functional proteomics: Mapping proteinprotein interactions and pathways. Curr. Opin. Mol. Ther. 4: 210-215
2 Nakamura, Y., T. Kaneko, S. Sato, M. Ikeuchi, H. Katoh, S. Sasamoto, A. Watanabe, M. Iriguchi, K. Kawashima, et al. 2002. Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res. 9: 123-130   DOI   ScienceOn
3 Nierman, W. C., T. V. Feldblyum, M. T. Laub, I. T. Paulsen, K. E. Nelson, J. A. Eisen, J. F. Heidelberg, M. R. Alley, N. Ohta, et al. 2001. Complete genome sequence of Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 98: 4136-4141
4 Shin, J.-S. and B.-G. Kim. 2001. Comparison of the $\omega$- transaminases from different microorganisms and application to production of chiral amines. Biosci. Biotechnol. Biochem. 65: 1782-1788   DOI   ScienceOn
5 Sonnhammer, E. L., S. R. Eddy, and R. Durbin 1997. Pfam: A comprehensive database of protein domain families based on seed alignments. Proteins 28: 405-420   DOI   ScienceOn
6 Onuffer, J. J. and J. F. Kirsch. 1995. Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis. Protein Sci. 4: 1750-1757   DOI   ScienceOn
7 Baker, D. and A. Sali. 2001. Protein structure prediction and structural genomics. Science 294: 93-96   DOI
8 Taylor, P. P., D. P. Pantaleone, R. F. Senkpeil, and I. G. Fotheringham. 1998. Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol. 16: 412-418   DOI   ScienceOn
9 Harris, A., M. Adler, J. Brink, R. Lin, M. Foehr, M. Ferrer, B. C. Langton-Webster, R. N. Harkins, and S. A. Thompson. 1998. Homologue scanning mutagenesis of heregulin reveals receptor specific binding epitopes. Biochem. Biophys. Res. Commun. 251: 220-224   DOI   ScienceOn
10 Shin, J.-S., H. Yun, J.-W. Jang, I. Park, and B.-G. Kim. 2003. Purification, characterization, and molecular cloning of a novel amine:pyruvate transaminase from Vibrio fluvialis JS17. Appl. Microbiol. Biotechnol. 61: 463-471   DOI
11 Zhang, C. and S.-H. Kim. 2003. Overview of structural genomics: From structure to function. Curr. Opin. Chem. Biol. 7: 28-32   DOI   ScienceOn
12 Kaneko, T., Y. Nakamura, S. Sato, E. Asamizu, T. Kato, S. Sasamoto, A. Watanabe, K. Idesawa, A. Ishikawa, et al. 2000. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7: 331-338   DOI   ScienceOn
13 Salanoubat, M., S. Genin, F. Artiguenave, J. Gouzy, S. Mangenot, M. Arlat, A. Billault, P. Brottier, J. C. Camus, et al. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415: 497-502   DOI   ScienceOn
14 Ito, S., A. Ota, K. Yamamoto, and Y. Kawashima. 1992. Resolution of the enantiomers of thiol compounds by reverse-phase liquid chromatography using chiral derivatization with 2,3,4-tetra-O-acetyl-$\beta$-D-glucopyranosyl isothiocyanate. J. Chromatogr. 626: 187-196   DOI   ScienceOn
15 Yun, H., S. Lim, B.-K. Cho, and B.-G. Kim. 2004. $\omega$-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k- 2: A new catalyst for kinetic resolution of $\beta$-amino acids and amines. Appl. Environ. Microbiol. 70: 2529-2534   DOI   ScienceOn
16 Kamphuis, J., E. M. Meijer, W. H. Boesten, T. Sonke, W. J. van den Tweel, and H. E. Schoemaker. 1992. New developments in the synthesis of natural and unnatural amino acids. Ann. N. Y. Acad. Sci. 672: 510-527   DOI
17 Norin, M. and M. Sundstrom. 2002 Structural proteomics: Developments in structure-to-function predictions. Trends Biotechnol. 20: 79-84   DOI   ScienceOn
18 Woodyer, R., W. A. van der Donk, and H. Zhao. 2003. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 42: 11604-11614   DOI   ScienceOn
19 Jansonius, J. N. 1998. Structure, evolution and action of vitamin B6-dependent enzymes. Curr. Opin. Struct. Biol. 8: 759-769   DOI   ScienceOn
20 Sacchi, S., S. Lorenzi, G. Molla, M. S. Pilone, C. Rossetti, and L. Pollegioni. 2002. Engineering the substrate specificity of Damino- acid oxidase. J. Biol. Chem. 277: 27510-27516   DOI   ScienceOn
21 Zhu, H., M. Bilgin, and M. Snyder. 2003. Proteomics. Annu. Rev. Biochem. 72: 783-812   DOI   ScienceOn
22 Rotticci, D., J. C. Rotticci-Mulder, S. Denman, T. Norin, and K. Hult. 2001. Improved enantioselectivity of a lipase by rational protein engineering. Chembiochem 2: 766-770   DOI   ScienceOn
23 Perl, D., U. Mueller, U. Heinemann, and F. X. Schmid. 2000. Two exposed amino acid residues confer thermostability on a cold shock protein. Nat. Struct. Biol. 7: 380-383   DOI   ScienceOn
24 Hwang, B.-Y., B.-K. Cho, H. Yun, K. Koteshwar, and B.-G. Kim. 2005. Revisit of aminotransferase in the genomic era and its application to biocatalysis. J. Mol. Catalysis B Enzym. 37: 47-55   DOI   ScienceOn
25 Baxter, S. M. and J. S. Fetrow. 2001. Sequence- and structurebased protein function prediction from genomic information. Curr. Opin. Drug Discov. Devel. 4: 291-295
26 Capela, D., F. Barloy-Hubler, J. Gouzy, G. Bothe, F. Ampe, J. Batut, P. Boistard, A. Becker, M. Boutry, et al. 2001. Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc. Natl. Acad. Sci. USA 98: 9877-9882