• Title/Summary/Keyword: n-Butanol + n-Decane

Search Result 8, Processing Time 0.018 seconds

Measurement and Prediction of Autoignition Temperature of n-Butanol + n-Decane System (n-Butanol과 n-Decane계의 최소자연발화온도 측정 및 예측)

  • Ha, Dong-Myeong;Hong, Soo-Kang
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.184-189
    • /
    • 2011
  • This study measured the AITs of n-butanol + n-decane system from ignition delay time (time lag) by using ASTM E659 apparatus. The AITs of n-butanol and n-decane which constituted binary system were $340^{\circ}C$ and $212^{\circ}C$, respectively. The experimental AITs of n-butanol + n-decane system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D. (average absolute deviation).

Prediction of Autoignition Temperature of n-Decane and sec-Butanol Mixture (n-Decane과 sec-Butanol 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • The autoignition temperature (AIT) of a material is the lowest temperature at which the material will spontaneously ignite. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs of n-Decane+sec-Butanol system by using ASTM E659 apparatus. The AITs of n-Decane and sec-Butanol which constituted binary system were $212^{\circ}C$ and $447^{\circ}C$, respectively. The experimental AITs of n-Decane+sec-Butanol system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D. (average absolute deviation).

Calculation and Measurement of Flash Point for n-Decane + n-Octanol and Acetic Acid + n-Butanol Using a Tag-Open-Cup Apparatus (Tag 개방식 장치를 활용한 n-Decane + n-Octanol계 및 Acetic Acid + n-Butanol계의 인화점 측정과 계산)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.45-50
    • /
    • 2015
  • The flash point is one of the most important properties for characterizing the fire and explosion hazard of liquid solutions. In this study, a Tag open-cup apparatus was used to measure the flash points of two flammable binary mixtures, n-decane + n-octanol and acetic acid + n-butanol. The flash point temperature was estimated using the UNIFAC (Universal Functional Activity Coefficient) group contribution model and optimization method. The experimentally derived flash point was also compared with the predicted flash point. The two methods can estimate the flash point fairly well for the n-decane + n-octanol and acetic acid + n-butanol systems.

The Measurement of Minimum Flash Point Behaviour (MFPB) for Binary Mixtures (이성분계 혼합물의 최소인화점 현상의 측정)

  • Hong, Soon-Kang;Yoon, Myung-O;Lee, Sung-Jin;Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.113-118
    • /
    • 2011
  • The flash point is an important indicator of the flammability of a chemical. The minimum flash point behaviour (MFPB) is exhibited when the flash point of a mixture is below the flash points of the individual components. The identification of this behaviour is critical, because a hazardous situation results from taking the lowest component flash point value as the mixture flash point. In this study, the flash points for the n-butanol + n-decane and n-octane + n-propanol systems which exhibit MFPB, were measured by Tag open-cup apparatus. The experimental data were compared with the alues calculated by the Raoult's law, the van Laar equation and the Wilson equation. The calculated values based on the van Laar and Wilson equations were found to be better than those based on the Raoult's law. It was concluded that the van Laar and Wilson equations were more effective than the Raoult' law at describing the activity coefficients for non-ideal solution such as the n-butanol + n-decane and n-octane + n-propanol systems. The predictive curve of the flash point prediction model based on the Wilson equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the van Laar equation.

The Lower Flash Points of the n-Butanol+n-Decane System

  • Dong-Myeong Ha;Yong-Chan Choi;Sung-Jin Lee
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.50-55
    • /
    • 2003
  • The lower flash points for the binary system, n-butanol+n-decane, were measured by Pensky-Martens closed cup tester. The experimental results showed the minimum in the flash point versus composition curve. The experimental data were compared with the values calculated by the reduced model under an ideal solution assumption and the flash point-prediction models based on the Van Laar and Wilson equations. The predictive curve based upon the reduced model deviated form the experimental data for this system. The experimental results were in good agreement with the predictive curves, which use the Van Laar and Wilson equations to estimate activity coefficients. However, the predictive curve of the flash point prediction model based on the Willson equation described the experimentally-derived data more effectively than that of the flash point prediction model based on the Van Laar equation.

Effect of Cosurfactant on Solubilization of Hydrocarbon Oils by Pluronic L64 Nonionic Surfactant Solution (보조계면활성제가 Pluronic L64 비이온 계면활성제에 의한 탄화수소 오일 가용화에 미치는 영향)

  • Bae, MinJung;Kim, DoWon;Cho, Seo-Yeon;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.219-225
    • /
    • 2014
  • In this study, effect of cosurfactant on the solubilization rate of n-octane, n-decane and n-dodecane oil was performed by micellar solutions of polymeric nonionic surfactant Pluronic L64($EO_{13}PO_{30}EO_{13}$) at room temperature. It has been found that the solubilization rate of a hydrocarbon oil was enhanced with an increase in both chain length and amount of alcohol added. In case of addition of a short chain alcohol such as 1-butanol, the solubilization rate of a hydrocarbon oil was slightly increased since most of alcohol molecules remained in an aqueous surfactant solution. On the other hand, the addition of a relatively long chain alcohol such as 1-hexanol and 1-octanol produced a big increase in solubilization rate of a hydrocarbon oil mainly due to incorporation of alcohol molecules into micelles and thus producing more flexible micellar packing density. Dynamic interfacial tension measurements showed the same trend found in solubilization rate measurement. Both interfacial tension value at equilibrium and time required to reach equilibrium decreased with an increase in chain length of an alcohol.