• Title/Summary/Keyword: multivariate statistical methods

Search Result 463, Processing Time 0.023 seconds

Resistant Singular Value Decomposition and Its Statistical Applications

  • Park, Yong-Seok;Huh, Myung-Hoe
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.1
    • /
    • pp.49-66
    • /
    • 1996
  • The singular value decomposition is one of the most useful methods in the area of matrix computation. It gives dimension reduction which is the centeral idea in many multivariate analyses. But this method is not resistant, i.e., it is very sensitive to small changes in the input data. In this article, we derive the resistant version of singular value decomposition for principal component analysis. And we give its statistical applications to biplot which is similar to principal component analysis in aspects of the dimension reduction of an n x p data matrix. Therefore, we derive the resistant principal component analysis and biplot based on the resistant singular value decomposition. They provide graphical multivariate data analyses relatively little influenced by outlying observations.

  • PDF

A Robust Principal Component Neural Network

  • Changha Hwang;Park, Hyejung;A, Eunyoung-N
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.625-632
    • /
    • 2001
  • Principal component analysis(PCA) is a multivariate technique falling under the general title of factor analysis. The purpose of PCA is to Identify the dependence structure behind a multivariate stochastic observation In order to obtain a compact description of it. In engineering field PCA is utilized mainly (or data compression and restoration. In this paper we propose a new robust Hebbian algorithm for robust PCA. This algorithm is based on a hyperbolic tangent function due to Hampel ef al.(1989) which is known to be robust in Statistics. We do two experiments to investigate the performance of the new robust Hebbian learning algorithm for robust PCA.

  • PDF

INVITED PAPER MULTIVARIATE ANALYSIS FOR THE CASE WHEN THE DIMENSION IS LARGE COMPARED TO THE SAMPLE SIZE

  • Fujikoshi, Yasunori
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.1
    • /
    • pp.1-24
    • /
    • 2004
  • This paper is concerned with statistical methods for multivariate data when the number p of variables is large compared to the sample size n. Such data appear typically in analysis of DNA microarrays, curve data, financial data, etc. However, there is little statistical theory for high dimensional data. On the other hand, there are some asymptotic results under the assumption that both and p tend to $\infty$, in some ratio p/n ${\rightarrow}$c. The results suggest that the new asymptotic results are more useful and insightful than the classical large sample asymptotics. The main purpose of this paper is to review some asymptotic results for high dimensional statistics as well as classical statistics under a high dimensional asymptotic framework.

Random Effects Models for Multivariate Survival Data: Hierarchical-Likelihood Approach

  • Ha Il Do;Lee Youngjo;Song Jae-Kee
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.193-200
    • /
    • 2000
  • Modelling the dependence via random effects in censored multivariate survival data has recently received considerable attention in the biomedical literature. The random effects models model not only the conditional survival times but also the conditional hazard rate. Systematic likelihood inference for the models with random effects is possible using Lee and Nelder's (1996) hierarchical-likelihood (h-likelihood). The purpose of this presentation is to introduce Ha et al.'s (2000a,b) inferential methods for the random effects models via the h-likelihood, which provide a conceptually simple, numerically efficient and reliable inferential procedures.

  • PDF

A Rao-Robson Chi-Square Test for Multivariate Normality Based on the Mahalanobis Distances

  • Park, Cheolyong
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.385-392
    • /
    • 2000
  • Many tests for multivariate normality are based on the spherical coordinates of the scaled residuals of multivariate observations. Moore and Stubblebine's (1981) Pearson chi-square test is based on the radii of the scaled residuals, or equivalently the sample Mahalanobis distances of the observations from the sample mean vector. The chi-square statistic does not have a limiting chi-square distribution since the unknown parameters are estimated from ungrouped data. We will derive a simple closed form of the Rao-Robson chi-square test statistic and provide a self-contained proof that it has a limiting chi-square distribution. We then provide an illustrative example of application to a real data with a simulation study to show the accuracy in finite sample of the limiting distribution.

  • PDF

Combining cluster analysis and neural networks for the classification problem

  • Kim, Kyungsup;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.31-34
    • /
    • 1996
  • The extensive researches have compared the performance of neural networks(NN) with those of various statistical techniques for the classification problem. The empirical results of these comparative studies have indicated that the neural networks often outperform the traditional statistical techniques. Moreover, there are some efforts that try to combine various classification methods, especially multivariate discriminant analysis with neural networks. While these efforts improve the performance, there exists a problem violating robust assumptions of multivariate discriminant analysis that are multivariate normality of the independent variables and equality of variance-covariance matrices in each of the groups. On the contrary, cluster analysis alleviates this assumption like neural networks. We propose a new approach to classification problems by combining the cluster analysis with neural networks. The resulting predictions of the composite model are more accurate than each individual technique.

  • PDF

Bayesian Parameter Estimation using the MCMC method for the Mean Change Model of Multivariate Normal Random Variates

  • Oh, Mi-Ra;Kim, Eoi-Lyoung;Sim, Jung-Wook;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.79-91
    • /
    • 2004
  • In this thesis, Bayesian parameter estimation procedure is discussed for the mean change model of multivariate normal random variates under the assumption of noninformative priors for all the parameters. Parameters are estimated by Gibbs sampling method. In Gibbs sampler, the change point parameter is generated by Metropolis-Hastings algorithm. We apply our methodology to numerical data to examine it.

Local T2 Control Charts for Process Control in Local Structure and Abnormal Distribution Data (지역적이고 비정규분포를 갖는 데이터의 공정관리를 위한 지역기반 T2관리도)

  • Kim, Jeong-Hun;Kim, Seoung-Bum
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.337-346
    • /
    • 2012
  • Purpose: A Control chart is one of the important statistical process control tools that can improve processes by reducing variability and defects. Methods: In the present study, we propose the local $T^2$ multivariate control chart that can efficiently detect abnormal observations by considering the local pattern of the in-control observations. Results: A simulation study has been conducted to examine the property of the proposed control chart and compare it with existing multivariate control charts. Conclusion: The results demonstrate the usefulness and effectiveness of the proposed control chart.

Comparison of Forecasting Performance in Multivariate Nonstationary Seasonal Time Series Models (다변량 비정상 계절형 시계열모형의 예측력 비교)

  • Seong, Byeong-Chan
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • This paper studies the analysis of multivariate nonstationary time series with seasonality. Three types of multivariate time series models are considered: seasonal cointegration model, nonseasonal cointegration model with seasonal dummies, and vector autoregressive model in seasonal differences that are compared for forecasting performances using Korean macro-economic time series data. The cointegration models produce smaller forecast errors in short horizons; however, when longer forecasting periods are considered the vector autoregressive model appears preferable.

ECM Algorithm for Fitting of Mixtures of Multivariate Skew t-Distribution

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.673-683
    • /
    • 2012
  • Cabral et al. (2012) defined a mixture model of multivariate skew t-distributions(STMM), and proposed the use of an ECME algorithm (a variation of a standard EM algorithm) to fit the model. Their estimation by the ECME algorithm is closely related to the estimation of the degree of freedoms in the STMM. With the ECME, their purpose is to escape from the calculation of a conditional expectation that is not provided by a closed form; however, their estimates are quite unstable during the procedure of the ECME algorithm. In this paper, we provide a conditional expectation as a closed form so that it can be easily calculated; in addition, we propose to use the ECM algorithm in order to stably fit the STMM.